A227319
Powers but not squares which are sum of consecutive primes less than 10^7 ordered according to the proximity of the first prime of the sum to the first prime: 2.
Original entry on oeis.org
8, 243, 128, 216, 12167, 1906624, 6859, 226981, 3125, 12167, 1252726552, 325660672, 1331, 19902511000, 32768, 537824, 69934528000, 704969, 39304, 42875, 50653, 751089429, 79507, 314432, 21952, 22665187, 47437928, 1605723211, 10648, 287496, 5177717, 7414875
Offset: 1
8 = 2^3 = 3 + 5; 243 = 3^5 = 41 + 43 + 47 + 53 + 59; 128 = 2^7 = 61 + 67; 216 = 6^3 = 107 + 109; 12167 = 23^3 = S(47,32) = Sum of 47 primes beginning with p(32); ... ; 11^3 = 1331 = 439 + 443 + 449; 5^5 = 3125 = S(11,55); 11^5 = 161051 = S(47,458); 2^13 = 8192 = 4093 + 4099; 3^13 = 1594323 = S(233,764); 2^17 = 131072 = S(40,443) = S(8,1896); 7^7 = 823543 = S(7^2,1917); 2^25 = S(1268,2269); 2001^3 = S(35209,2368).
-
n=10^7;v=vector(n);i=0;for(a=2,n,if(isprime(a),i++;v[i]=a));for(b=1,315,k=0;for(j=b,i,k=k+v[j];if(ispower(k,,&n)&!issquare(k),print1(k,", "))))
A227115
Powers but not squares which are sum of consecutive composites less than 10^7 ordered according to the proximity of the first composite of the sum to the first composite: 4.
Original entry on oeis.org
27, 10077696, 128, 32768, 8, 27, 1000, 1728, 5088448, 690807104, 27, 32, 512, 2048, 512, 6859, 4913, 243, 405224, 125, 3125, 2744, 98611128, 27000, 314432, 216, 1728, 1889568, 243, 2744, 512, 4913000
Offset: 1
We denote the n-th composite as c(n). Some of the odd powers are the sum of consecutive composites in several ways: 27 = 3^3 = c(1)+c(2)+c(3)+c(4) = c(3)+c(4)+c(5) = c(17) = 4 + 6 + 8 + 9 = 8 + 9 + 10. 243 = 3^5 = c(189) = c(90)+c(91) = c(57)+c(59)+c(59) = c(41)+c(42)+c(43)+c(44) = 121 + 122 = 80 + 81 + 82 = 58 + 60 + 62 + 63. 1000 = 10^3 is sum of 30 consecutive composites beginning with c(7) = 14. 1728 = 12^3 = Ramanujan taxicab minus 1 is sum of 42 consecutive composites beginning with c(7) = 14 and of 20 consecutive composites beginning with c(53) = 75.
-
n1=10^7;v=vector(n1);i=0;for(a=2,n1,if(isprime(a),next,i++;v[i]=a));for(b=1,60,k=0;for(j=b,i,k=k+v[j];if(ispower(k,,&n)&ispower(k)%2==1,print1([k,n,ispower(k),j-b+1,b]," "))))
Showing 1-2 of 2 results.
Comments