A227270 Numbers m such that Sum_{i= 1..k} 1/d(i) + Product_{i= 1..k} 1/d(i) = 1, where d(i) are the k prime distinct divisors of m.
1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 42, 48, 54, 64, 72, 84, 96, 108, 126, 128, 144, 162, 168, 192, 216, 252, 256, 288, 294, 324, 336, 378, 384, 432, 486, 504, 512, 576, 588, 648, 672, 756, 768, 864, 882, 972, 1008, 1024, 1134, 1152, 1176, 1296, 1344, 1458
Offset: 1
Examples
42 is in the sequence because the prime divisors of 42 are 2, 3, 7 and 1/2 + 1/3 + 1/7 + 1/(2*3*7) = 1.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500
Crossrefs
Cf A069819.
Programs
-
Maple
with(numtheory):for n from 1 to 5000 do: x:=factorset(n):n1:=nops(x): d:= sum('1/x[i] ', 'i'=1..n1) + product('1/x[j] ', 'j'=1..n1):if d=1 then printf(`%d, `,n):else fi:od:
-
Mathematica
pdd1Q[n_]:=Module[{c=FactorInteger[n][[All,1]]},Total[1/c]+ 1/Times@@c ==1]; Join[{1},Select[Range[1500],pdd1Q]] (* Harvey P. Dale, Aug 22 2016 *)