A226938 Primes p such that p^4 + p - 1, p^4 + p^2 - 1, p^4 + p^3 - 1 are also prime.
2, 3, 13, 43, 4909, 21283, 47417, 57301, 59951, 72647, 98713, 132623, 135841, 149101, 153371, 285463, 343489, 355519, 360823, 375101, 396997, 405901, 447197, 452377, 458797, 501173, 532379, 557153, 605947, 610199, 614071, 616079, 627901, 644051, 656141, 668417
Offset: 1
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Select[Prime[Range[10000]],And@@PrimeQ[#1+{#2,#2^2,#2^3}]&[#^4-1,#]&] (* Peter J. C. Moses, Jul 05 2013 *) Select[Prime[Range[60000]],AllTrue[#^4-1+#^Range[3],PrimeQ]&] (* Harvey P. Dale, Mar 26 2023 *)
Formula
A226770(a^4(n) - 1) = 3.
Extensions
More terms from Peter J. C. Moses