cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A227284 First primes of arithmetic progressions of 9 primes each with the common difference 210.

Original entry on oeis.org

199, 409, 3499, 10859, 564973, 1288607, 1302281, 2358841, 3600521, 4047803, 17160749, 20751193, 23241473, 44687567, 50655739, 53235151, 87662609, 100174043, 103468003, 110094161, 180885839, 187874017, 192205147, 221712811, 243051733, 243051943, 304570103
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
When a(n+1) = a(n) + 210, as for n = 1, 25, ..., then a(n) is in A094220: start of AP of 10 primes with common distance 210. - M. F. Hasler, Jan 02 2020

Examples

			p = 409 then the AP-9 is {409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089} with the difference 9# = 2*3*5*7 = 210.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap9p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d}] == {True, True, True, True, True, True, True, True, True}, AppendTo[ap9p, p]], {p, 3, 10^9, 2}]; ap9p
  • PARI
    v=[1..8]*210; forprime(p=1,,for(i=1,#v,isprime(p+v[i])||next(2));print1(p",")) \\ M. F. Hasler, Jan 02 2020

A227281 First primes of arithmetic progressions of 5 primes each with the common difference 30.

Original entry on oeis.org

7, 11, 37, 107, 137, 151, 277, 359, 389, 401, 541, 557, 571, 877, 1033, 1493, 1663, 2221, 2251, 2879, 3271, 6269, 6673, 6703, 7457, 7487, 9431, 10103, 10133, 10567, 11981, 12457, 12973, 14723, 17047, 19387, 24061, 25643, 25673, 26861, 26891, 27337, 27367
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 5, we have d = 3# = 6 and there is ONLY one AP-5 with this difference: {5, 11, 17, 23, 29}.

Examples

			p = 11 then {11, 11 + 1*30, 11 + 2*30, 11 + 3*30, 11 + 4*30} = {11, 41, 71, 101, 131}, which is 5 primes in arithmetic progression with the difference 5# = 30.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 30; ap5p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d}] == {True, True, True, True, True}, AppendTo[ap5p, p]], {p, 3, 25000, 2}]; ap5p

A227282 First primes of arithmetic progressions of 7 primes each with the common difference 210.

Original entry on oeis.org

47, 179, 199, 409, 619, 829, 881, 1091, 1453, 3499, 3709, 3919, 10529, 10627, 10837, 10859, 11069, 11279, 14423, 20771, 22697, 30097, 30307, 31583, 31793, 32363, 41669, 75703, 93281, 95747, 120661, 120737, 120871, 120947, 129287, 140603, 153319, 153529
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 7, we have d = 5*5# = 150 and there is ONLY one AP-7 with this difference: {7, 157, 307, 457, 607, 757, 907}.

Examples

			p = 179 then the AP-5 is {179, 389, 599, 809, 1019, 1229, 1439} with the difference 7# = 210.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap7p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[ap7p, p]], {p, 3, 10^9, 2}]; ap7p
    Select[Prime[Range[15000]],And@@PrimeQ[NestList[210+#&,#,6]]&] (* Harvey P. Dale, Nov 16 2013 *)
  • PARI
    is(p)=forstep(k=p,p+1260,210,if(!isprime(k),return(0)));1 \\ Charles R Greathouse IV, Dec 19 2013

A227283 First primes of arithmetic progressions of 8 primes each with the common difference 210.

Original entry on oeis.org

199, 409, 619, 881, 3499, 3709, 10627, 10859, 11069, 30097, 31583, 120661, 120737, 153319, 182537, 471089, 487391, 564973, 565183, 825991, 1010747, 1280623, 1288607, 1288817, 1302281, 1302491, 1395209, 1982599, 2358841, 2359051, 2439571, 3161017, 3600521
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap8p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d}] == {True, True, True, True, True, True, True, True}, AppendTo[ap8p, p]], {p, 3, 3000000, 2}]; ap8p
    Select[Prime[Range[260000]],AllTrue[NestList[#+210&,#,7],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 03 2018 *)

A227286 First primes of arithmetic progressions of 13 primes each with the common difference 30030.

Original entry on oeis.org

14933623, 2085471361, 132420258931, 185041386139, 682539280751, 834172298383, 834172328413, 856378247603, 856378277633, 888867525577, 931115864233, 1059709587163, 1345030977911, 1360910561113, 1578280523803, 1973348047529, 1988253536611, 2083502941613
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an arithmetic progression of k primes is conjectured to be k# = A034386(k) for all k > 7. 13# = 30030.

Examples

			p = 2085471361 then the AP-13 is {2085471361, 2085501391, 2085531421, 2085561451, 2085591481, 2085621511, 2085651541, 2085681571, 2085711601, 2085741631, 2085771661, 2085801691, 2085831721} with the difference 13# = 2*3*5*7*11*13 = 30030.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 30030; ap13p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d, p + 11*d, p + 12*d}] == {True, True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap13p, p]], {p, 3, 41*10^9, 2}]; ap13p

Extensions

More terms from Jens Kruse Andersen, Jun 27 2014
Showing 1-5 of 5 results.