cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A094220 Primes p such that p+210*i is prime for i=1 to 9.

Original entry on oeis.org

199, 243051733, 498161423, 2490123989, 5417375591, 8785408259, 8988840499, 10385475431, 11283287357, 14384731703, 18012540899, 18346623637, 21848966327, 25708013101, 26160970331, 26230852979
Offset: 1

Views

Author

Carlos Rivera, May 27 2004

Keywords

Comments

Subsequence of p in A227284 such that p + 210 is also (the next term) in A227284. - M. F. Hasler, Jan 02 2020

Crossrefs

Cf. A227284.

Programs

  • Mathematica
    Select[Prime[Range[254*10^6]],AllTrue[#+210*Range[9],PrimeQ]&] (* The program generates the first five terms of the sequence. *) (* Harvey P. Dale, Feb 04 2024 *)

Extensions

More terms from Don Reble, May 30 2004
Definition simplified by Harvey P. Dale, Feb 04 2024

A227281 First primes of arithmetic progressions of 5 primes each with the common difference 30.

Original entry on oeis.org

7, 11, 37, 107, 137, 151, 277, 359, 389, 401, 541, 557, 571, 877, 1033, 1493, 1663, 2221, 2251, 2879, 3271, 6269, 6673, 6703, 7457, 7487, 9431, 10103, 10133, 10567, 11981, 12457, 12973, 14723, 17047, 19387, 24061, 25643, 25673, 26861, 26891, 27337, 27367
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 5, we have d = 3# = 6 and there is ONLY one AP-5 with this difference: {5, 11, 17, 23, 29}.

Examples

			p = 11 then {11, 11 + 1*30, 11 + 2*30, 11 + 3*30, 11 + 4*30} = {11, 41, 71, 101, 131}, which is 5 primes in arithmetic progression with the difference 5# = 30.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 30; ap5p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d}] == {True, True, True, True, True}, AppendTo[ap5p, p]], {p, 3, 25000, 2}]; ap5p

A268790 Magic sums of 3 X 3 magic squares composed of primes.

Original entry on oeis.org

177, 213, 219, 267, 309, 327, 381, 393, 411, 417, 447, 453, 471, 501, 519, 537, 573, 579, 633, 681, 717, 723, 753, 771, 789, 807, 813, 843, 849, 879, 921, 933, 1011, 1041, 1047, 1059, 1077, 1101, 1119, 1137, 1149, 1167, 1191, 1203, 1227, 1257, 1263, 1293
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 13 2016

Keywords

Comments

From Robert Israel, Feb 16 2016: (Start)
All terms are 3 times odd primes.
3*p is a term if and only if p is a prime not in A073350.
Conjecture: 3*p is a term for every prime > 859.
I verified this for all primes < 100000.
The Green-Tao theorem implies the sequence is infinite: given one magic square with entries a(i,j), there are infinitely many pairs of positive integers x,y such that b(i,j) = x + y*a(i,j) are all prime. Then b(i,j) form another magic square. (End)
Every number of the form 3*(A227284(n) + 840) is in this sequence. - Arkadiusz Wesolowski, Feb 22 2016
The terms equal three times the central elements (and equivalently, one third of the sum of all elements) of the 3 X 3 magic squares made of primes, which are listed in A320872. - M. F. Hasler, Oct 28 2018

Examples

			Examples of 3 X 3 magic squares composed of primes.
.
+---+---+---+
| 17| 89| 71|
+---+---+---+
|113| 59| 5 |
+---+---+---+
| 47| 29|101|
+---+---+---+
The magic constant is 177 = a(1).
.
+---+---+---+
| 41| 89| 83|
+---+---+---+
|113| 71| 29|
+---+---+---+
| 59| 53|101|
+---+---+---+
The magic constant is 213 = a(2).
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N P:= select(isprime,{seq(p,p=3..2*N/3,2)}):
    count:= 0:
    for ic from 1 while P[ic] <= N/3 do
       c:= P[ic];
       V:= map(`-`,P[ic+1..-1],c) intersect map(t -> c-t, P[1..ic-1]);
       nv:= nops(V);
       VV:= {seq(seq(V[j]-V[i],j=i+1..nv),i=1..nv-1)} intersect V;
       nvv:= nops(VV);
       found:= false;
       for ia from 1 to nvv while not found do
         a:= VV[ia];
         for ib from ia+1 to nvv while VV[ib] < c - a do
           b:= VV[ib];
           if b <> 2*a and {c-a-b,c-a+b,c-b+a,c+a+b} subset P then
              found:= true;
              count:= count+1;
              A[count]:= 3*c;
              break
           fi
         od
       od:
    od:
    seq(A[i],i=1..count); # Robert Israel, Feb 16 2016
  • PARI
    c=3;A268790_vec=3*vector(50,i,c=A320872_row(1,0,c+1)[2,2]) \\ Illustrates formula & comment. - M. F. Hasler, Oct 28 2018
    
  • PARI
    is_A268790(c)={denominator(c/=3)==1&& isprime(c)&& forstep(a=2,c\2-1,2, isprime(c-a)&& isprime(c+a)&& forstep(b=2,c-2*a-2,2, isprime(c-2*a-b)&& isprime(c-a-b)&& isprime(c-b)&& isprime(c+b)&& isprime(c+a+b)&& isprime(c+2*a+b)&& return(1)))} \\ M. F. Hasler, Oct 28 2018

Formula

If conjecture is true, a(n) = 3*prime(n+40) for n >= 110. - Robert Israel, Feb 16 2016
A268790 = 3*{column 5 of A320872} as a set, i.e., with duplicates removed. - M. F. Hasler, Oct 28 2018

A227282 First primes of arithmetic progressions of 7 primes each with the common difference 210.

Original entry on oeis.org

47, 179, 199, 409, 619, 829, 881, 1091, 1453, 3499, 3709, 3919, 10529, 10627, 10837, 10859, 11069, 11279, 14423, 20771, 22697, 30097, 30307, 31583, 31793, 32363, 41669, 75703, 93281, 95747, 120661, 120737, 120871, 120947, 129287, 140603, 153319, 153529
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 7, we have d = 5*5# = 150 and there is ONLY one AP-7 with this difference: {7, 157, 307, 457, 607, 757, 907}.

Examples

			p = 179 then the AP-5 is {179, 389, 599, 809, 1019, 1229, 1439} with the difference 7# = 210.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap7p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[ap7p, p]], {p, 3, 10^9, 2}]; ap7p
    Select[Prime[Range[15000]],And@@PrimeQ[NestList[210+#&,#,6]]&] (* Harvey P. Dale, Nov 16 2013 *)
  • PARI
    is(p)=forstep(k=p,p+1260,210,if(!isprime(k),return(0)));1 \\ Charles R Greathouse IV, Dec 19 2013

A227283 First primes of arithmetic progressions of 8 primes each with the common difference 210.

Original entry on oeis.org

199, 409, 619, 881, 3499, 3709, 10627, 10859, 11069, 30097, 31583, 120661, 120737, 153319, 182537, 471089, 487391, 564973, 565183, 825991, 1010747, 1280623, 1288607, 1288817, 1302281, 1302491, 1395209, 1982599, 2358841, 2359051, 2439571, 3161017, 3600521
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap8p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d}] == {True, True, True, True, True, True, True, True}, AppendTo[ap8p, p]], {p, 3, 3000000, 2}]; ap8p
    Select[Prime[Range[260000]],AllTrue[NestList[#+210&,#,7],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 03 2018 *)

A227285 First primes of arithmetic progressions of 11 primes each with the common difference 2310.

Original entry on oeis.org

60858179, 186874511, 291297353, 1445838451, 2943023729, 4597225889, 7024895393, 8620560607, 8656181357, 19033631401, 20711172773, 25366690189, 27187846201, 32022299977, 34351919351
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
16th term is greater than 40*10^9.

Examples

			p = 186874511 then the AP-11 is {186874511, 186876821, 186879131, 186881441, 186883751, 186886061, 186888371, 186890681, 186892991, 186895301, 186897611} with the difference 11# = 2*3*5*7*11 = 2310.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 2310; ap11p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d}] == {True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap11p, p]], {p, 3, 40*10^9, 2}]; ap11p
    ap11Q[n_]:=AllTrue[Rest[NestList[2310+#&,n,10]],PrimeQ]; Select[Prime[ Range[ 148*10^7]],ap11Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* The program will take a long time to run *) (* Harvey P. Dale, Oct 27 2019 *)

Extensions

a(16)-a(21) from Zak Seidov, Jul 07 2014

A227286 First primes of arithmetic progressions of 13 primes each with the common difference 30030.

Original entry on oeis.org

14933623, 2085471361, 132420258931, 185041386139, 682539280751, 834172298383, 834172328413, 856378247603, 856378277633, 888867525577, 931115864233, 1059709587163, 1345030977911, 1360910561113, 1578280523803, 1973348047529, 1988253536611, 2083502941613
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an arithmetic progression of k primes is conjectured to be k# = A034386(k) for all k > 7. 13# = 30030.

Examples

			p = 2085471361 then the AP-13 is {2085471361, 2085501391, 2085531421, 2085561451, 2085591481, 2085621511, 2085651541, 2085681571, 2085711601, 2085741631, 2085771661, 2085801691, 2085831721} with the difference 13# = 2*3*5*7*11*13 = 30030.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 30030; ap13p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d, p + 11*d, p + 12*d}] == {True, True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap13p, p]], {p, 3, 41*10^9, 2}]; ap13p

Extensions

More terms from Jens Kruse Andersen, Jun 27 2014

A269325 a(n) = initial term of an arithmetic progression of nine primes used to form a 3 X 3 magic square with magic sum A269324(n).

Original entry on oeis.org

199, 409, 3499, 2063, 6043, 10859, 433, 3823, 10861, 4721, 1699, 15607, 11927, 3413, 17, 19141, 12547, 137, 23509, 7151, 4091, 24677, 6553, 937, 31333, 521, 13469, 34913, 25073, 37013, 20599, 6949, 6143, 30427, 4673, 45767, 52879, 35257, 53299, 9619, 2141
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 23 2016

Keywords

References

  • Joseph S. Madachy, "Magic and Antimagic Squares." Ch. 4 in Madachy's Mathematical Recreations, New York: Dover, 1979, p. 95.

Crossrefs

Cf. A269324. Supersequence of A227284.
Showing 1-8 of 8 results.