A227296 Number of partitions of n into parts <= phi(n), where phi is Euler's totient function (cf. A000010).
1, 1, 1, 2, 3, 6, 4, 14, 15, 26, 23, 55, 34, 100, 90, 146, 186, 296, 199, 489, 434, 725, 807, 1254, 919, 1946, 2063, 2943, 3036, 4564, 2462, 6841, 7665, 9871, 11098, 14744, 12384, 21636, 23928, 30677, 31603, 44582, 31570, 63260, 69414, 86420, 99795, 124753
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a227296 n = p [1 .. a000010 n] n where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1) +`if`(i>n, 0, b(n-i, i))) end: a:= n-> b(n, phi(n)): seq(a(n), n=0..100); # Alois P. Heinz, May 11 2015
-
Mathematica
(* Requires version 6.0+ *) Table[Length[IntegerPartitions[n, n, Range[EulerPhi[n]]]], {n, 0, 47}] (* Ivan Neretin, May 11 2015 *) intPartLen[n_, i_] := intPartLen[n, i] = If[n == 0 || i == 1, 1, intPartLen[n, i - 1] + If[i > n, 0, intPartLen[n - i, i]]]; intPartLenPhi[n_] := intPartLen[n, EulerPhi[n]]; Table[intPartLenPhi[n], {n, 0, 99}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, May 24 2018