cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227296 Number of partitions of n into parts <= phi(n), where phi is Euler's totient function (cf. A000010).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 4, 14, 15, 26, 23, 55, 34, 100, 90, 146, 186, 296, 199, 489, 434, 725, 807, 1254, 919, 1946, 2063, 2943, 3036, 4564, 2462, 6841, 7665, 9871, 11098, 14744, 12384, 21636, 23928, 30677, 31603, 44582, 31570, 63260, 69414, 86420, 99795, 124753
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 05 2013

Keywords

Crossrefs

Programs

  • Haskell
    a227296 n = p [1 .. a000010 n] n where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
           b(n, i-1) +`if`(i>n, 0, b(n-i, i)))
        end:
    a:= n-> b(n, phi(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 11 2015
  • Mathematica
    (* Requires version 6.0+ *) Table[Length[IntegerPartitions[n, n, Range[EulerPhi[n]]]], {n, 0, 47}] (* Ivan Neretin, May 11 2015 *)
    intPartLen[n_, i_] := intPartLen[n, i] = If[n == 0 || i == 1, 1, intPartLen[n, i - 1] + If[i > n, 0, intPartLen[n - i, i]]]; intPartLenPhi[n_] := intPartLen[n, EulerPhi[n]]; Table[intPartLenPhi[n], {n, 0, 99}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, May 24 2018