cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A227551 Number T(n,k) of partitions of n into distinct parts with boundary size k; triangle T(n,k), n>=0, 0<=k<=A227568(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 5, 2, 0, 1, 5, 4, 0, 1, 5, 6, 0, 1, 6, 7, 1, 0, 1, 6, 10, 1, 0, 1, 7, 11, 3, 0, 1, 9, 13, 4, 0, 1, 7, 18, 6, 0, 1, 8, 20, 9, 0, 1, 10, 21, 14, 0, 1, 9, 27, 16, 1, 0, 1, 10, 29, 22, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Examples

			T(12,1) = 1: [12].
T(12,2) = 6: [1,11], [2,10], [3,4,5], [3,9], [4,8], [5,7].
T(12,3) = 7: [1,2,3,6], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,3,7], [2,4,6].
T(12,4) = 1: [1,2,4,5].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 3;
  0, 1, 3, 1;
  0, 1, 3, 2;
  0, 1, 5, 2;
  0, 1, 5, 4;
  0, 1, 5, 6;
  0, 1, 6, 7, 1;
		

Crossrefs

Row sums give: A000009.
Last elements of rows give: A227552.
Cf. A227345 (a version with trailing zeros), A053993, A201077, A227568, A224878 (one part of size 0 allowed).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
          expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, x, 1], Expand[If[i < 1, 0, If[t > 1, x, 1]*b[n, i - 1, Quotient[t, 2]] + If[i > n, 0, If[t == 2, x, 1]*b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 12 2016, after Alois P. Heinz *)

A227344 Triangle read by rows, partitions into distinct parts by perimeter.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 0, 7, 0, 0, 0, 0, 1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 16, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 20, 0
Offset: 1

Views

Author

Joerg Arndt, Jul 08 2013

Keywords

Comments

The perimeter of a partition is the sum of all parts p that do not have two neighbors (that is, not both p-1 and p+1 are parts).
Row sums are A000009.
Column sums are A122129 (noted by Patrick Devlin).

Examples

			Triangle starts (dots for zeros):
01: 1
02: . 1
03: . . 2
04: . . . 2
05: . . . . 3
06: . . . 1 . 3
07: . . . . . . 5
08: . . . . . . . 6
09: . . . . . 1 . . 7
10: . . . . 1 . . . . 9
11: . . . . . . . . 1 . 11
12: . . . . . . . 1 . 1 . 13
13: . . . . . . . . 1 . 1 . 16
14: . . . . . . 1 . . . . 1 . 20
15: . . . . . 1 . . . 1 . 1 1 . 23
16: . . . . . . . . . . 2 . 1 1 . 28
17: . . . . . . . . . . . 2 . 1 2 . 33
18: . . . . . . . . 1 . . 1 2 . 1 2 . 39
19: . . . . . . . . . 1 . . 1 1 1 1 3 . 46
20: . . . . . . . 1 . . . . . 1 1 2 1 3 . 55
21: . . . . . . 1 . . . . . . 2 2 1 2 1 4 . 63
22: . . . . . . . . . . 1 . 1 . 2 1 1 2 2 4 . 75
23: . . . . . . . . . . . 1 . 1 . 2 1 3 2 2 5 . 87
24: . . . . . . . . . . . . 1 . 1 2 3 . 4 2 3 5 . 101
25: . . . . . . . . . 1 . . . 1 . 1 1 3 . 6 2 3 7 . 117
26: . . . . . . . . . . 1 . 1 . . . 2 1 3 . 7 2 4 8 . 136
27: . . . . . . . . 1 . . . . 1 . . . 5 2 2 1 8 3 4 9 . 156
28: . . . . . . . 1 . . . . . . 1 1 . . 4 2 3 2 8 4 5 11 . 180
29: . . . . . . . . . . . . . . 1 2 1 . . 4 3 3 3 9 5 5 13 . 207
30: . . . . . . . . . . . 1 . . 1 1 1 1 . 3 6 2 2 5 9 6 6 14 . 238
		

Crossrefs

Cf. A227345 (partitions by boundary size).
Cf. A227426 (diagonal: number of partitions with maximal perimeter).
Cf. A227538 (smallest k with positive T(n,k)), A227614 (second lower diagonal). - Alois P. Heinz, Jul 17 2013

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x^(i+1), 1),
          expand(`if`(i<1, 0, `if`(t>1, x^(i+1), 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x^(i+1), 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jul 16 2013
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t>1, x^(i+1), 1], Expand[If[i<1, 0, If[t>1, x^(i+1), 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t == 2, x^(i+1), 1]*b[n-i, i-1, Quotient[t, 2]+2]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n, 0]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

A227552 Number of partitions of n into distinct parts with maximal boundary size.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 4, 6, 1, 1, 3, 4, 6, 9, 14, 1, 2, 3, 5, 8, 11, 17, 24, 1, 1, 3, 5, 8, 11, 18, 24, 35, 49, 1, 2, 3, 6, 9, 14, 21, 30, 42, 60, 81, 1, 1, 3, 5, 9, 13, 21, 29, 43, 60, 84, 113, 156, 1, 2, 3, 6, 10, 15, 24, 35, 50, 71, 99, 134, 184, 246
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having less than two neighbors.

Crossrefs

Last elements of rows of A227551.
Last nonzero elements of rows of A227345.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
          expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    a:= n-> (p->coeff(p, x, degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..100);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>1, x, 1], Expand[If[i<1, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t==2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; a[n_] := Function [p, Coefficient[p, x, Exponent[p, x]]][b[n, n, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A227551(n,A227568(n)).

A227559 Number of partitions of n into distinct parts with boundary size 2.

Original entry on oeis.org

1, 1, 2, 3, 3, 3, 5, 5, 5, 6, 6, 7, 9, 7, 8, 10, 9, 10, 12, 11, 11, 12, 13, 13, 15, 14, 14, 17, 15, 15, 18, 17, 19, 19, 18, 19, 21, 20, 20, 23, 21, 22, 26, 23, 23, 24, 25, 26, 27, 26, 26, 29, 29, 28, 30, 29, 29, 32, 30, 31, 35, 31, 34, 35, 33, 34, 36, 37, 35
Offset: 3

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=2 of A227345, A227551.

A227560 Number of partitions of n into distinct parts with boundary size 3.

Original entry on oeis.org

1, 2, 2, 4, 6, 7, 10, 11, 13, 18, 20, 21, 27, 29, 32, 37, 42, 45, 49, 54, 58, 65, 70, 72, 82, 87, 90, 98, 103, 111, 119, 124, 130, 139, 147, 151, 163, 169, 174, 187, 196, 203, 211, 219, 229, 240, 250, 256, 268, 279, 288, 300, 311, 318, 333, 342, 350, 368, 376
Offset: 7

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=3 of A227345, A227551.

A227561 Number of partitions of n into distinct parts with boundary size 4.

Original entry on oeis.org

1, 1, 3, 4, 6, 9, 14, 16, 22, 28, 35, 42, 53, 62, 73, 86, 98, 114, 134, 148, 168, 192, 212, 235, 264, 289, 320, 355, 385, 419, 461, 495, 538, 586, 626, 674, 734, 779, 835, 898, 951, 1013, 1087, 1147, 1219, 1300, 1367, 1447, 1542, 1614, 1701, 1801, 1887, 1982
Offset: 12

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=4 of A227345, A227551.

A227562 Number of partitions of n into distinct parts with boundary size 5.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 17, 24, 31, 43, 54, 67, 86, 108, 129, 160, 192, 224, 268, 315, 360, 424, 487, 556, 637, 723, 810, 921, 1029, 1141, 1285, 1426, 1568, 1746, 1920, 2102, 2314, 2529, 2748, 3013, 3269, 3533, 3848, 4164, 4481, 4840, 5214, 5590, 6016, 6448, 6882
Offset: 19

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=5 of A227345, A227551.

A227563 Number of partitions of n into distinct parts with boundary size 6.

Original entry on oeis.org

1, 1, 3, 5, 8, 11, 18, 24, 35, 49, 64, 83, 112, 138, 177, 220, 272, 333, 409, 486, 586, 699, 817, 962, 1131, 1306, 1515, 1748, 1999, 2286, 2610, 2946, 3337, 3770, 4219, 4729, 5297, 5898, 6553, 7279, 8042, 8882, 9803, 10755, 11817, 12966, 14152, 15454, 16877
Offset: 27

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=6 of A227345, A227551.

A227564 Number of partitions of n into distinct parts with boundary size 7.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 21, 30, 42, 60, 81, 107, 145, 186, 238, 303, 382, 474, 591, 723, 880, 1068, 1285, 1528, 1829, 2158, 2534, 2970, 3472, 4022, 4668, 5377, 6173, 7076, 8076, 9168, 10428, 11793, 13288, 14971, 16814, 18807, 21050, 23467, 26099, 29014, 32158
Offset: 37

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=7 of A227345, A227551.

A227565 Number of partitions of n into distinct parts with boundary size 8.

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 21, 29, 43, 60, 84, 113, 156, 201, 266, 346, 443, 558, 709, 877, 1091, 1343, 1643, 1994, 2423, 2898, 3470, 4139, 4897, 5773, 6800, 7940, 9266, 10779, 12466, 14393, 16590, 19009, 21756, 24847, 28253, 32073, 36354, 41035, 46275, 52088, 58430
Offset: 48

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Crossrefs

Column k=8 of A227345, A227551.
Showing 1-10 of 13 results. Next