cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227375 G.f.: 1/(1 - x*(1-x^6)/(1 - x^2*(1-x^7)/(1 - x^3*(1-x^8)/(1 - x^4*(1-x^9)/(1 - x^5*(1-x^10)/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 14, 24, 41, 69, 118, 200, 340, 579, 985, 1677, 2854, 4858, 8270, 14078, 23966, 40798, 69453, 118235, 201280, 342655, 583328, 993046, 1690543, 2877949, 4899369, 8340598, 14198887, 24171937, 41149884, 70052848, 119256753, 203020631, 345618810, 588375486, 1001640259
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2013

Keywords

Comments

Radius of convergence r is a root of 1 - r - r^2 - r^3 + r^5 + r^6 + r^7 = 0,
where r = Limit a(n)/a(n+1) = 0.587411973105598587998520092901249815195963...
Compare to sequence A227376, generated by 1/(1-x-x^2-x^3+x^5+x^6+x^7).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 14*x^7 + 24*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    nMax = 42; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A227375 = col[5][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
    LinearRecurrence[{1,1,1,0,0,-2,-2,-1,0,1,1,1},{1,1,1,2,3,5,9,14,24,41,69,118},50] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+6))*CF+x*O(x^n))); polcoeff(CF, n)
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    /* From R. J. Mathar's g.f. formula: */
    {a(n)=polcoeff((1-x-x^4)*(1+x-x^3-x^4-x^5)/((1-x^5)*(1-x-x^2-x^3+x^5+x^6+x^7) +x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", ")) \\ Paul D. Hanna, Jul 18 2013

Formula

Conjecture: G.f. -(x^4+x-1)*(x^5+x^4+x^3-x-1) / ( (x-1)*(x^4+x^3+x^2+x+1)*(x^7+x^6+x^5-x^3-x^2-x+1) ). - R. J. Mathar, Jul 17 2013
Showing 1-1 of 1 results.