A227399 Number of permutations i_1, ..., i_n of 1, ..., n with i_1 = 1 and i_n = n such that i_1+2*i_2, i_2+2*i_3, ..., i_{n-1}+2*i_n, i_n+2*i_1 are pairwise distinct modulo n.
1, 1, 0, 1, 1, 2, 8, 20, 18, 166, 397, 2788, 5448, 78102, 149562, 2576896, 6003432, 91012592, 257246112, 5272355344, 12450552690
Offset: 1
Examples
a(6) = 2 due to the permutations 1,2,5,4,3,6 and 1,4,3,2,5,6. a(9) > 0 due to the permutation 1,2,3,5,8,4,7,6,9. a(12) > 0 due to the permutation 1,2,3,4,6,8,5,11,10,7,9,12.
Links
- B. Arsovski, A proof of Snevily's conjecture, Israel J. Math. 182(2011), 505-508.
- Zhi-Wei Sun, Some new problems in additive combinatorics, preprint, arXiv:1309.1679 [math.NT], 2013-2014.
Programs
-
Mathematica
(* A program to compute desired permutations for n = 9. *) V[i_]:=Part[Permutations[{2,3,4,5,6,7,8}],i] m=0 Do[If[Length[Union[{2},Table[Mod[If[j==0,1,Part[V[i],j]]+2*If[j<7,Part[V[i],j+1],9],9],{j,0,7}]]]<9,Goto[aa]]; m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",9];Label[aa];Continue,{i,1,7!}]
Extensions
a(12)-a(21) from Robin Visser, Aug 21 2023
Comments