A227408 Set of all n, where n = r(s(n)) = s(r(n)), given that r(n) = n+bitcount(n), s(n) = n-bitcount(n), and bitcount(n) is the count of binary 1's in n.
0, 22, 25, 38, 41, 70, 73, 134, 137, 237, 243, 262, 265, 365, 371, 429, 435, 461, 467, 492, 494, 498, 501, 518, 521, 621, 627, 685, 691, 717, 723, 748, 750, 754, 757, 813, 819, 845, 851, 876, 878, 882, 885, 909, 915, 940, 942, 946, 949, 972, 974, 978, 981, 988, 995, 1002, 1009, 1030, 1033, 1133, 1139, 1197, 1203, 1229
Offset: 1
Examples
0 = r(s(0)) = s(r(0)) = r(0) = s(0) = 0. 22 = r(s(22))= s(r(22)) = r(19) = s(25) = 22. 25 = r(s(25))= s(r(25)) = r(22) = s(28) = 25. 38 = r(s(38))= s(r(38)) = r(35) = s(41) = 38.
Links
- Andres M. Torres, Table of n, a(n) for n = 1..10000
Programs
-
PARI
npbc(n) = n + hammingweight(n) nmbc(n) = n - hammingweight(n) isok(n) = (n == npbc(nmbc(n))) && (n == nmbc(npbc(n))) \\ Michel Marcus, Aug 08 2013
Formula
Find all n, such that: n = r(s(n)) = s(r(n)), where r(n) = n+bitcount(n) and s(n) = n-bitcount(n)
Extensions
Offset changed from 0 to 1 by Michel Marcus, Aug 08 2013
Comments