cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055938 Integers not generated by b(n) = b(floor(n/2)) + n (complement of A005187).

Original entry on oeis.org

2, 5, 6, 9, 12, 13, 14, 17, 20, 21, 24, 27, 28, 29, 30, 33, 36, 37, 40, 43, 44, 45, 48, 51, 52, 55, 58, 59, 60, 61, 62, 65, 68, 69, 72, 75, 76, 77, 80, 83, 84, 87, 90, 91, 92, 93, 96, 99, 100, 103, 106, 107, 108, 111, 114, 115, 118, 121, 122, 123, 124, 125, 126, 129
Offset: 1

Views

Author

Alford Arnold, Jul 21 2000

Keywords

Comments

Note that the lengths of the consecutive runs in a(n) form sequence A001511.
Integers that are not a sum of distinct integers of the form 2^k-1. - Vladeta Jovovic, Jan 24 2003
Also n! never ends in this many 0's in base 2 - Carl R. White, Jan 21 2008
A079559(a(n)) = 0. - Reinhard Zumkeller, Mar 18 2009
These numbers are dead-end points when trying to apply the iterated process depicted in A071542 in reverse, i.e. these are positive integers i such that there does not exist k with A000120(i+k)=k. See also comments at A179016. - Antti Karttunen, Oct 26 2012
Conjecture: a(n)=b(n) defined as b(1)=2, for n>1, b(n+1)=b(n)+1 if n is already in the sequence, b(n+1)=b(n)+3 otherwise. If so, then see Cloitre comment in A080578. - Ralf Stephan, Dec 27 2013
Numbers n for which A257265(m) = 0. - Reinhard Zumkeller, May 06 2015. Typo corrected by Antti Karttunen, Aug 08 2015
Numbers which have a 2 in their skew-binary representation (cf. A169683). - Allan C. Wechsler, Feb 28 2025

Examples

			Since A005187 begins 0 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31... this sequence begins 2 5 6 9 12 13 14 17 20 21
		

Crossrefs

Complement of A005187. Setwise difference of A213713 and A213717.
Row 1 of arrays A257264, A256997 and also of A255557 (when prepended with 1). Equally: column 1 of A256995 and A255555.
Cf. also arrays A254105, A254107 and permutations A233276, A233278.
Left inverses: A234017, A256992.
Gives positions of zeros in A213714, A213723, A213724, A213731, A257265, positions of ones in A213725-A213727 and A256989, positions of nonzeros in A254110.
Cf. also A010061 (integers that are not a sum of distinct integers of the form 2^k+1).
Analogous sequence for factorial base number system: A219658, for Fibonacci number system: A219638, for base-3: A096346. Cf. also A136767-A136774.

Programs

  • Haskell
    a055938 n = a055938_list !! (n-1)
    a055938_list = concat $
       zipWith (\u v -> [u+1..v-1]) a005187_list $ tail a005187_list
    -- Reinhard Zumkeller, Nov 07 2011
    
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_Integer] := a[Floor[n/2]] + n; b = {}; Do[ b = Append[b, a[n]], {n, 0, 105}]; c =Table[n, {n, 0, 200}]; Complement[c, b]
    (* Second program: *)
    t = Table[IntegerExponent[(2n)!, 2], {n, 0, 100}]; Complement[Range[t // Last], t] (* Jean-François Alcover, Nov 15 2016 *)
  • PARI
    L=listcreate();for(n=1,1000,for(k=2*n-hammingweight(n)+1,2*n+1-hammingweight(n+1),listput(L,k)));Vec(L) \\ Ralf Stephan, Dec 27 2013
    
  • Python
    def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1)
    def a043545(n):
        x=bin(n)[2:]
        return int(max(x)) - int(min(x))
    def a079559(n): return 1 if n==0 else a043545(n + 1)*a079559(n + 1 - a053644(n + 1))
    print([n for n in range(1, 201) if a079559(n)==0]) # Indranil Ghosh, Jun 11 2017, after the comment by Reinhard Zumkeller
  • Scheme
    ;; utilizing COMPLEMENT-macro from Antti Karttunen's IntSeq-library)
    (define A055938 (COMPLEMENT 1 A005187))
    ;; Antti Karttunen, Aug 08 2015
    

Formula

a(n) = A080578(n+1) - 2 = A080468(n+1) + 2*n (conjectured). - Ralf Stephan, Dec 27 2013
From Antti Karttunen, Aug 08 2015: (Start)
Other identities. For all n >= 1:
A234017(a(n)) = n.
A256992(a(n)) = n.
A257126(n) = a(n) - A005187(n).
(End)

Extensions

More terms from Robert G. Wilson v, Jul 24 2000

A227643 a(0)=1; for n > 0, a(n) = 1 + Sum_{i=A228086(n)..A228087(n)} [A092391(i) = n]*a(i), where [] is the Iverson bracket, resulting in 1 when i + A000120(i) = n and 0 otherwise.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 1, 6, 2, 3, 7, 4, 8, 1, 13, 1, 2, 16, 1, 18, 2, 1, 21, 1, 2, 22, 3, 2, 23, 4, 1, 26, 1, 6, 2, 7, 29, 1, 37, 1, 2, 38, 3, 2, 39, 4, 1, 42, 1, 5, 3, 1, 48, 4, 1, 50, 1, 5, 2, 2, 51, 6, 3, 1, 54, 55, 7, 59, 8, 2, 68, 1, 3, 69, 4, 2, 70, 5, 1, 73, 1
Offset: 0

Views

Author

Andres M. Torres, Jul 18 2013

Keywords

Comments

Each a(n) = 1 + the count of nodes in the finite subtree defined by the edge relation parent = child + A000120(child). In other words, one more than the count of n's descendants, by which we mean the whole transitive closure of all children emanating from the parent at n. The subtree is finite because successive descendant values get smaller and approach zero.

Examples

			0 has no children distinct from itself (we only have A092391(0)=0), so we define a(0) = (0+1) = 1,
1 has no children (it is one of the terms of A010061), so a(1) = (0+1) = 1,
4 and 6 are also members of A010061, so both a(4) and a(6) = (0+1) = 1,
7 has 1,2,3,4 and 5 among its descendants (as A092391(5)=7, A092391(3)=A092391(4)=5, A092391(2)=3, A092391(1)=2), so a(7) = (5+1) = 6,
8 has 6 as a child value,        so a(8) = (1+1) = 2,
9 has 6 and 8 as descendants,    so a(9) = (2+1) = 3,
10 has {1,2,3,4,5,7}             so a(10) = (6+1) = 7.
		

Crossrefs

Cf. A010061 (gives the positions of ones), A000120, A092391, A228082, A228083, A228085, A227359, A227361, A227408.
Cf. also A213727 for a descendant counts for a similar tree defined by the edge relation parent = child - A000120(child).

Programs

  • Scheme
    ;; A deficient definition which works only up to n=128:
    (definec (A227643deficient n) (cond ((zero? n) 1) ((zero? (A228085 n)) 1) ((= 1 (A228085 n)) (+ 1 (A227643deficient (A228086 n)))) ((= 2 (A228085 n)) (+ 1 (A227643deficient (A228086 n)) (A227643deficient (A228087 n)))) (else (error "Not yet implemented for cases where n has more than two immediate children!"))))
    ;; Another definition that works for all n, but is somewhat slower:
    (definec (A227643full n) (cond ((zero? n) 1) (else (+ 1 (add (lambda (i) (if (= (A092391 i) n) (A227643full i) 0)) (A228086 n) (A228087 n))))))
    ;; Auxiliary function add implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    ;; by Antti Karttunen, Aug 16 2013, macro definec can be found in his IntSeq-library.

Formula

From Antti Karttunen, Aug 16 2013: (Start)
a(0)=1; and for n > 0, if A228085(n)=0 then a(n)=1; if A228085(n)=1 then a(n)=1+a(A228086(n)); if A228085(n)=2 then a(n)=1+a(A228086(n))+a(A228087(n)); otherwise (when A228085(n)>2) cannot be computed with this formula, which works only up to n=128.
a(0)=1; and for n > 0, a(n) = 1+Sum_{i=A228086(n)..A228087(n)} [A092391(i) = n]*a(i). (Here [...] denotes the Iverson bracket, resulting in 1 when i+A000120(i) = n and 0 otherwise. This formula works with all n.) (End)
Showing 1-2 of 2 results.