cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A010061 Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m.

Original entry on oeis.org

1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, 46, 48, 51, 54, 56, 63, 71, 78, 80, 83, 86, 88, 95, 97, 102, 104, 111, 113, 116, 119, 121, 128, 130, 133, 135, 142, 144, 147, 150, 152, 159, 161, 166, 168, 175, 177, 180, 183, 185, 192, 200, 207, 209, 212, 215, 217
Offset: 1

Views

Author

Keywords

Comments

No two consecutive values appear in this sequence (see Links). - Griffin N. Macris, May 31 2020
The asymptotic density of this sequence is (1/8) * (2 - Sum_{n>=1} 1/2^a(n))^2 = 0.252660... (A242403). - Amiram Eldar, Nov 28 2020

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
  • G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148.

Crossrefs

Complement of A228082, or equally, numbers which do not occur in A092391. Gives the positions of zeros (those occurring after a(0)) in A228085-A228087 and positions of ones in A227643. Leftmost column of A228083. Base-10 analog: A003052.

Programs

  • Haskell
    a010061 n = a010061_list !! (n-1)
    a010061_list = filter ((== 0) . a228085) [1..]
    -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    # For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
  • Mathematica
    Table[n + Total[IntegerDigits[n, 2]], {n, 0, 300}] // Complement[Range[Last[#]], #]& (* Jean-François Alcover, Sep 03 2013 *)
  • PARI
    /* Gen(n, b) returns a list of the generators of n in base b. Written by Max Alekseyev (see Alekseyev et al., 2021).
    For example, Gen(101, 10) returns [91, 101]. - N. J. A. Sloane, Jan 02 2022 */
    { Gen(u, b=10) = my(d, m, k);
      if(u<0 || u==1, return([]); );
      if(u==0, return([0]); );
      d = #digits(u, b)-1;
      m = u\b^d;
      while( sumdigits(m, b) > u - m*b^d,
        m--;
        if(m==0, m=b-1; d--; );
      );
      k = u - m*b^d - sumdigits(m, b);
      vecsort( concat( apply(x->x+m*b^d, Gen(k, b)),
                       apply(x->m*b^d-1-x, Gen((b-1)*d-k-2, b)) ) );
    }

Extensions

More terms from Antti Karttunen, Aug 17 2013
Better definition from Matthew C. Russell, Oct 08 2013

A228085 a(n) = number of distinct k which satisfy n = k + wt(k), where wt(k) (A000120) gives the number of 1's in binary representation of a nonnegative integer k.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

wt(k) is also called bitcount(k).
a(n) = number of times n occurs in A092391.
The first 2 occurs at n = A230303(2) = 5 (as we have two solutions A092391(3) = A092391(4) = 5).
The first 3 occurs at n = A230303(3) = 129 (as we have three solutions A092391(123) = A092391(124) = A092391(128) = 129).
The first 4 occurs at n = A230303(4) = 4102, where we have solutions A092391(4091) = A092391(4092) = A092391(4099) = A092391(4100) = 4102.
For n>=1, a(2^n) = a(n-1) since an integer k = m is a solution to n-1 = m + wt(m) if and only if k = 2^n - 1 - m is a solution to 2^n = k + wt(k). - Max Alekseyev, Feb 23 2021

Crossrefs

A010061 gives the position of zeros, A228082 the positions of nonzeros, A228088 the positions of ones.
Cf. A000120, A010062, A092391, A228086, A228087, A228091 (positions of 2's), A227643, A230058, A230092 (positions of 3's), A230093, A227915 (positions of 4's), A070939, A230303.

Programs

  • Haskell
    a228085 n = length $ filter ((== n) . a092391) [n - a070939 n .. n]
    -- Reinhard Zumkeller, Oct 13 2013
  • Maple
    For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
    # Find all inverses of m under x -> x + wt(x) - N. J. A. Sloane, Oct 19 2013
    A000120 := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120;
    F:=proc(m) local ans,lb,n,i;
    lb:=m-ceil(log(m+1)/log(2)); ans:=[];
    for n from max(1,lb) to m do if (n+wt(n)) = m then ans:=[op(ans),n]; fi; od:
    [seq(ans[i],i=1..nops(ans))];
    end;
  • Mathematica
    nmax = 8191; Clear[a]; a[_] = 0;
    Scan[Set[a[#[[1]]], #[[2]]]&, Tally[Table[n + DigitCount[n, 2, 1], {n, 0, nmax}]]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Oct 29 2019 *)
    a[n_] := Module[{k, cnt = 0}, For[k = n - Floor[Log[2, n]] - 1, k < n, k++, If[n == k + DigitCount[k, 2, 1], cnt++]]; cnt];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 28 2020 *)

A228082 Numbers that are of the form k + sum of binary digits of k for some nonnegative integer k.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 22, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 85, 87, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

Complement of A010061.
Obtained when A092391 is sorted and duplicates are removed.
The asymptotic density of this sequence is 1 - (1/8) * (Sum_{n>=1} 1/2^a(n))^2 = 1 - A242403 = 0.747339... - Amiram Eldar, Nov 28 2020

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
  • G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148.

Crossrefs

Numbers that occur to the right of the leftmost column of A228083. Positions of nonzeros in A228085. A superset of A228088.
The even terms are the first row of A350601.

Programs

  • Haskell
    a228082 n = a228082_list !! (n-1)
    a228082_list = 0 : filter ((> 0) . a228085) [1..]
    -- Reinhard Zumkeller, Oct 13 2013
  • Mathematica
    Table[n + Total[IntegerDigits[n, 2]], {n, 0, 100}] // Union (* Jean-François Alcover, Sep 03 2013 *)

A213727 a(n) = 0 if n is in the infinite trunk of the "binary beanstalk", otherwise number of nodes (including leaves and the node n itself) in that finite branch of the beanstalk.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 0, 1, 1, 1, 0, 0, 1, 3, 0, 1, 1, 5, 0, 1, 3, 0, 1, 1, 1, 1, 0, 0, 1, 3, 0, 1, 1, 5, 0, 1, 3, 0, 1, 1, 1, 0, 7, 1, 0, 5, 1, 1, 0, 3, 1, 3, 0, 1, 1, 1, 1, 1, 0, 0, 1, 3, 0, 1, 1, 5, 0, 1, 3, 0, 1, 1, 1, 0, 7, 1, 0, 5, 1, 1, 0, 3
Offset: 0

Views

Author

Antti Karttunen, Nov 01 2012

Keywords

Comments

a(n) tells, for each natural number n, whether it belongs to the infinite trunk of the binary beanstalk (in A179016, when a(n)=0), or if it is one of the terminal nodes (i.e., leaves, A055938, when a(n)=1), or otherwise, when a(n) > 1, tells from how many different numbers one can arrive at this n by repeatedly subtracting their bit-count (A000120) from them (as explained in A071542), and including also n itself as one of the cases.
a(n) is always odd unless it is zero. In particular, each a(A213717(n)) is an odd number greater than one.

Examples

			a(10) = 3 because we include 10 itself ("1010" in binary) and the two numbers n for which it is true that n - A000120(n) = 10, i.e., 12 and 13 ("1100" and "1101" in binary). Furthermore, there do not exist any such numbers for 12 or 13, as both are members of A055938 (see also the comment at A213717).
Similarly, a(22) = 5 as there are the following five cases: 22 itself, 24 as 24-A000120(24) = 24-2 = 22 (note that 24 is in A055938), 25 as 25-A000120(25) = 25-3 = 22, and the two terminal nodes (leaves) branching from 25, that is, 28 & 29 (as 28-A000120(28) = 28-3 = 25, and 29-A000120(29) = 29-4=25).
		

Crossrefs

Cf. A179016.
Analogous sequences computed for other "beanstalk" or similar tree systems: A227643, A230427, A255327.

Formula

If A079559(n)=0, a(n)=1; otherwise, if A213719(n)=1, a(n)=0; otherwise a(n) = 1+a(A213723(n))+a(A213724(n)).
Other identities. For all n:
a(A179016(n)) = 0, a(A055938(n)) = 1, and a(A213717(n)) >= 3.
a(A213717(n)) = (2*A213726(A213717(n)))-1.

A255327 a(n) = 0 if n is in the infinite trunk of "number-of-runs beanstalk" (one of the terms of A255056), otherwise number of nodes (including leaves and the node n itself) in that finite subtree of the beanstalk.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 5, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 5, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 0, 1, 2, 1, 10, 1, 0, 1, 8, 1, 0, 1, 3, 1, 2, 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 0, 1, 3, 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 5, 1, 0, 1, 2, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 21 2015

Keywords

Comments

The edge-relation between nodes is given by A236840(child) = parent. a(n) = 1 + the size of transitive closure of all children emanating from the parent at n. For any n in A255056 this would be infinite, thus such n are marked with zeros.
Odd numbers are leaves, as there are no such k that A236840(k) were odd, thus a(2n+1) = 1.

Crossrefs

Formula

a(2n+1) = 1, and for even numbers 2n, if A255339(n) = 1, then a(2n) = 0, otherwise, a(2n) = 1 + sum_{k = A091067(n) .. A255068(n)} a(k).

A262697 a(n)=0 if n is in A259934, otherwise number of nodes (including leaves and the node n itself) in that finite subtree whose root is n and edge-relation is defined by A049820(child) = parent.

Original entry on oeis.org

0, 6, 0, 3, 2, 2, 0, 1, 1, 38, 3, 37, 0, 1, 2, 33, 2, 32, 0, 1, 1, 30, 0, 29, 1, 1, 3, 28, 1, 26, 0, 24, 2, 1, 0, 23, 1, 1, 16, 21, 1, 2, 0, 1, 2, 18, 0, 17, 13, 1, 1, 16, 1, 14, 0, 1, 1, 13, 0, 10, 11, 9, 0, 1, 1, 8, 1, 1, 1, 6, 0, 4, 10, 3, 1, 1, 23, 2, 0, 1, 2, 22, 4, 20, 9, 1, 3, 19, 1, 5, 0, 13, 2, 4, 0, 11, 8, 10, 1, 3, 1, 2, 0, 1, 6, 9, 0, 8, 1, 1, 2, 6, 1, 1, 0, 3, 1, 1, 0, 2, 5, 0, 12, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Examples

			For n=1, its transitive closure (as defined by edge-relation A049820(child) = parent) is the union of {1} itself together with all its descendants, together {1, 3, 4, 5, 7, 8}. We see that there are no other nodes in a subtree whose root is 1, because A049820(3) = 3 - d(3) = 1, A049820(4) = 1, A049820(5) = 3, A049820(7) = 5, A049820(8) = 4 and both 7 and 8 are terms of A045765. Thus a(1) = 6.
For n=9, its transitive closure is {9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 27, 29, 31, 33, 35, 36, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79}, containing 38 terms, thus a(9) = 38.
		

Crossrefs

Formula

If A262693(n) = 1 [when n is in A259934],
then a(n) = 0,
otherwise, if A060990(n) = 0 [when n is one of the leaves, A045765],
then a(n) = 1,
otherwise:
a(n) = 1 + Sum_{k = A082284(n) .. A262686(n)} [A049820(k) = n] * a(k).
(In the last clause [ ] stands for Iverson bracket, giving as its result 1 only when A049820(k) = n, and 0 otherwise).

A228086 a(n) is the least k which satisfies n = k + bitcount(k), or 0 if no such k exists. Here bitcount(k) (or wt(k), A000120) gives the number of 1's in binary representation of nonnegative integer k.

Original entry on oeis.org

0, 0, 1, 2, 0, 3, 0, 5, 6, 8, 7, 9, 10, 0, 11, 0, 13, 14, 0, 15, 18, 0, 19, 0, 21, 22, 24, 23, 25, 26, 0, 27, 0, 29, 30, 33, 31, 0, 35, 0, 37, 38, 40, 39, 41, 42, 0, 43, 0, 45, 46, 0, 47, 50, 0, 51, 0, 53, 54, 56, 55, 57, 58, 0, 59, 64, 61, 62, 66, 63, 67, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

A083058(n)+1 gives a lower bound for nonzero terms, n-1 an upper bound.

Crossrefs

Cf. A228087, A228085, A335599. A010061 gives the positions of zeros after a(0). The union of A010061 and A228088 gives the positions where a(n) = A228087(n).
Cf. also A213723, A227643.

Programs

  • Mathematica
    a[n_] := Module[{k}, For[k = n - Floor[Log[2, n]] - 1, k < n, k++, If[n == k + DigitCount[k, 2, 1], Return[k]]]; 0];
    a /@ Range[0, 1000]; (* Jean-François Alcover, Nov 28 2020 *)
  • Scheme
    (define (A228086 n) (if (zero? n) n (let loop ((k (+ (A083058 n) 1))) (cond ((> k n) 0) ((= n (A092391 k)) k) (else (loop (+ 1 k)))))))

A228087 a(n) = largest k which satisfies n = k + bitcount(k), or 0 if no such k exists. Here bitcount(k) (A000120) gives the number of 1's in binary representation of nonnegative integer k.

Original entry on oeis.org

0, 0, 1, 2, 0, 4, 0, 5, 6, 8, 7, 9, 10, 0, 12, 0, 13, 16, 0, 17, 18, 0, 20, 0, 21, 22, 24, 23, 25, 26, 0, 28, 0, 32, 30, 33, 34, 0, 36, 0, 37, 38, 40, 39, 41, 42, 0, 44, 0, 45, 48, 0, 49, 50, 0, 52, 0, 53, 54, 56, 55, 57, 58, 0, 60, 64, 61, 65, 66, 63, 68, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

A083058(n)+1 gives a lower bound for nonzero terms, n-1 an upper bound.

Crossrefs

Cf. A228086, A228085. A010061 gives the positions of zeros after a(0). The union of A010061 and A228088 gives the positions where a(n) = A228086(n).
Cf. also A213724, A227643.

Programs

  • Scheme
    (define (A228087 n) (let loop ((k n)) (cond ((<= k (A083058 n)) 0) ((= n (A092391 k)) k) (else (loop (- k 1))))))

A228083 Table of binary Self-numbers and their descendants; square array T(r,c), with row r>=1, column c>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 5, 6, 5, 7, 8, 13, 7, 10, 9, 16, 15, 10, 12, 11, 17, 19, 18, 12, 14, 14, 19, 22, 20, 21, 14, 17, 17, 22, 25, 22, 24, 23, 17, 19, 19, 25, 28, 25, 26, 27, 30, 19, 22, 22, 28, 31, 28, 29, 31, 34, 32, 22, 25, 25, 31, 36, 31, 33, 36, 36, 33, 37
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Examples

			The top-left corner of the square array:
   1,  2,  3,  5,  7, 10, 12, 14, ...
   4,  5,  7, 10, 12, 14, 17, 19, ...
   6,  8,  9, 11, 14, 17, 19, 22, ...
  13, 16, 17, 19, 22, 25, 28, 31, ...
  15, 19, 22, 25, 28, 31, 36, 38, ...
  18, 20, 22, 25, 28, 31, 36, 38, ...
  21, 24, 26, 29, 33, 35, 38, 41, ...
  23, 27, 31, 36, 38, 41, 44, 47, ...
  ...
The non-initial terms on each row are obtained by adding to the preceding term the number of 1-bits in its binary representation (A000120).
		

Crossrefs

First column: A010061. First row: A010062. Transpose: A228084. See A151942 for decimal analog.

Programs

  • Mathematica
    nmax0 = 100;
    nmax := Length[col[1]];
    col[1] = Table[n + DigitCount[n, 2, 1], {n, 0, nmax0}] // Complement[Range[Last[#]], #]&;
    col[k_] := col[k] = col[k - 1] + DigitCount[col[k-1], 2, 1];
    T[n_, k_] := col[k][[n]];
    Table[T[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 28 2020 *)

Formula

T(r,1) are those numbers not of form n + sum of binary digits of n (binary Self numbers) = A010061(r);
T(r,c) = T(r,c-1) + sum of binary digits of T(r,c-1) = A092391(T(r,c-1)).
Showing 1-9 of 9 results.