cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A228084 Transpose of A228083.

Original entry on oeis.org

1, 4, 2, 6, 5, 3, 13, 8, 7, 5, 15, 16, 9, 10, 7, 18, 19, 17, 11, 12, 10, 21, 20, 22, 19, 14, 14, 12, 23, 24, 22, 25, 22, 17, 17, 14, 30, 27, 26, 25, 28, 25, 19, 19, 17, 32, 34, 31, 29, 28, 31, 28, 22, 22, 19, 37, 33, 36, 36, 33, 31, 36, 31, 25, 25, 22
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

See table A228083 of which this is transposed version.

Programs

Formula

a(n) = A228083(A004736(n),A002260(n)). [Table A228083 transposed.]

A010061 Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m.

Original entry on oeis.org

1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, 46, 48, 51, 54, 56, 63, 71, 78, 80, 83, 86, 88, 95, 97, 102, 104, 111, 113, 116, 119, 121, 128, 130, 133, 135, 142, 144, 147, 150, 152, 159, 161, 166, 168, 175, 177, 180, 183, 185, 192, 200, 207, 209, 212, 215, 217
Offset: 1

Views

Author

Keywords

Comments

No two consecutive values appear in this sequence (see Links). - Griffin N. Macris, May 31 2020
The asymptotic density of this sequence is (1/8) * (2 - Sum_{n>=1} 1/2^a(n))^2 = 0.252660... (A242403). - Amiram Eldar, Nov 28 2020

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
  • G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148.

Crossrefs

Complement of A228082, or equally, numbers which do not occur in A092391. Gives the positions of zeros (those occurring after a(0)) in A228085-A228087 and positions of ones in A227643. Leftmost column of A228083. Base-10 analog: A003052.

Programs

  • Haskell
    a010061 n = a010061_list !! (n-1)
    a010061_list = filter ((== 0) . a228085) [1..]
    -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    # For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
  • Mathematica
    Table[n + Total[IntegerDigits[n, 2]], {n, 0, 300}] // Complement[Range[Last[#]], #]& (* Jean-François Alcover, Sep 03 2013 *)
  • PARI
    /* Gen(n, b) returns a list of the generators of n in base b. Written by Max Alekseyev (see Alekseyev et al., 2021).
    For example, Gen(101, 10) returns [91, 101]. - N. J. A. Sloane, Jan 02 2022 */
    { Gen(u, b=10) = my(d, m, k);
      if(u<0 || u==1, return([]); );
      if(u==0, return([0]); );
      d = #digits(u, b)-1;
      m = u\b^d;
      while( sumdigits(m, b) > u - m*b^d,
        m--;
        if(m==0, m=b-1; d--; );
      );
      k = u - m*b^d - sumdigits(m, b);
      vecsort( concat( apply(x->x+m*b^d, Gen(k, b)),
                       apply(x->m*b^d-1-x, Gen((b-1)*d-k-2, b)) ) );
    }

Extensions

More terms from Antti Karttunen, Aug 17 2013
Better definition from Matthew C. Russell, Oct 08 2013

A092391 a(n) = n + wt(n), where wt(n) = A000120(n) = binary weight of n.

Original entry on oeis.org

0, 2, 3, 5, 5, 7, 8, 10, 9, 11, 12, 14, 14, 16, 17, 19, 17, 19, 20, 22, 22, 24, 25, 27, 26, 28, 29, 31, 31, 33, 34, 36, 33, 35, 36, 38, 38, 40, 41, 43, 42, 44, 45, 47, 47, 49, 50, 52, 50, 52, 53, 55, 55, 57, 58, 60, 59, 61, 62, 64, 64, 66, 67, 69, 65, 67, 68, 70, 70, 72, 73, 75
Offset: 0

Views

Author

Reinhard Zumkeller, May 08 2004

Keywords

Crossrefs

A010061 gives the numbers not occurring in this sequence. A228082 gives the terms of this sequence sorted into ascending order, with duplicates removed. A228085(n) gives the number of times n occurs in this sequence.

Programs

Formula

a(n) = n + A000120(n).
A010062(n+1) = a(A010062(n)).
G.f.: (1/(1 - x))*Sum_{k>=0} (2^k + 1)*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jul 23 2017

A010062 a(0)=1; thereafter a(n+1) = a(n) + number of 1's in binary representation of a(n).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 12, 14, 17, 19, 22, 25, 28, 31, 36, 38, 41, 44, 47, 52, 55, 60, 64, 65, 67, 70, 73, 76, 79, 84, 87, 92, 96, 98, 101, 105, 109, 114, 118, 123, 129, 131, 134, 137, 140, 143, 148, 151, 156, 160, 162, 165, 169, 173, 178, 182, 187, 193, 196, 199, 204
Offset: 0

Views

Author

Leonid Broukhis, Mar 15 1996

Keywords

Comments

Sequence A230297 (and A157845 without initial term) converted from binary to decimal, cf. formula. - M. F. Hasler, Nov 18 2019

Examples

			a(7) = 14 because a(6) = 12, which is 1100 in binary (having 2 on bits), and 12 + 2 = 14.
a(8) = 17 because a(7) = 14, which is 1110 in binary (having 3 on bits), and 14 + 3 = 17.
		

Crossrefs

First row of A228083.
For the base-10 analog see A004207.
Cf. A000120, A010061, A092391, A229167, A096303, A229743, A229744, A230297 (this sequence written in binary), A230298 (read mod 2).
See A230088 for partial sums.
Equals A028897 o A230297 = A028897 o A157845 (up to offset); see also A007088.

Programs

Formula

a(n) = (n/2)*log n + O(n*sqrt(log n * loglog n)), where log means log_2. In particular, a(n) ~ (n/2)*log n. [Stolarsky]
a(n + 1) = A092391(a(n)) = a(n) + A000120(a(n)). - Reinhard Zumkeller, May 27 2012, May 08 2004; corrected thanks to a notice by Lambert Herrgesell
a(n) = A028897(A230297(n)) = A028897(A157845(n+1)). - M. F. Hasler, Nov 18 2019

Extensions

More terms from Benoit Cloitre, Jun 02 2002
Stolarsky reference from Matthew C. Russell, Oct 08 2013

A228082 Numbers that are of the form k + sum of binary digits of k for some nonnegative integer k.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 22, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 85, 87, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2013

Keywords

Comments

Complement of A010061.
Obtained when A092391 is sorted and duplicates are removed.
The asymptotic density of this sequence is 1 - (1/8) * (Sum_{n>=1} 1/2^a(n))^2 = 1 - A242403 = 0.747339... - Amiram Eldar, Nov 28 2020

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
  • G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148.

Crossrefs

Numbers that occur to the right of the leftmost column of A228083. Positions of nonzeros in A228085. A superset of A228088.
The even terms are the first row of A350601.

Programs

  • Haskell
    a228082 n = a228082_list !! (n-1)
    a228082_list = 0 : filter ((> 0) . a228085) [1..]
    -- Reinhard Zumkeller, Oct 13 2013
  • Mathematica
    Table[n + Total[IntegerDigits[n, 2]], {n, 0, 100}] // Union (* Jean-François Alcover, Sep 03 2013 *)

A227643 a(0)=1; for n > 0, a(n) = 1 + Sum_{i=A228086(n)..A228087(n)} [A092391(i) = n]*a(i), where [] is the Iverson bracket, resulting in 1 when i + A000120(i) = n and 0 otherwise.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 1, 6, 2, 3, 7, 4, 8, 1, 13, 1, 2, 16, 1, 18, 2, 1, 21, 1, 2, 22, 3, 2, 23, 4, 1, 26, 1, 6, 2, 7, 29, 1, 37, 1, 2, 38, 3, 2, 39, 4, 1, 42, 1, 5, 3, 1, 48, 4, 1, 50, 1, 5, 2, 2, 51, 6, 3, 1, 54, 55, 7, 59, 8, 2, 68, 1, 3, 69, 4, 2, 70, 5, 1, 73, 1
Offset: 0

Views

Author

Andres M. Torres, Jul 18 2013

Keywords

Comments

Each a(n) = 1 + the count of nodes in the finite subtree defined by the edge relation parent = child + A000120(child). In other words, one more than the count of n's descendants, by which we mean the whole transitive closure of all children emanating from the parent at n. The subtree is finite because successive descendant values get smaller and approach zero.

Examples

			0 has no children distinct from itself (we only have A092391(0)=0), so we define a(0) = (0+1) = 1,
1 has no children (it is one of the terms of A010061), so a(1) = (0+1) = 1,
4 and 6 are also members of A010061, so both a(4) and a(6) = (0+1) = 1,
7 has 1,2,3,4 and 5 among its descendants (as A092391(5)=7, A092391(3)=A092391(4)=5, A092391(2)=3, A092391(1)=2), so a(7) = (5+1) = 6,
8 has 6 as a child value,        so a(8) = (1+1) = 2,
9 has 6 and 8 as descendants,    so a(9) = (2+1) = 3,
10 has {1,2,3,4,5,7}             so a(10) = (6+1) = 7.
		

Crossrefs

Cf. A010061 (gives the positions of ones), A000120, A092391, A228082, A228083, A228085, A227359, A227361, A227408.
Cf. also A213727 for a descendant counts for a similar tree defined by the edge relation parent = child - A000120(child).

Programs

  • Scheme
    ;; A deficient definition which works only up to n=128:
    (definec (A227643deficient n) (cond ((zero? n) 1) ((zero? (A228085 n)) 1) ((= 1 (A228085 n)) (+ 1 (A227643deficient (A228086 n)))) ((= 2 (A228085 n)) (+ 1 (A227643deficient (A228086 n)) (A227643deficient (A228087 n)))) (else (error "Not yet implemented for cases where n has more than two immediate children!"))))
    ;; Another definition that works for all n, but is somewhat slower:
    (definec (A227643full n) (cond ((zero? n) 1) (else (+ 1 (add (lambda (i) (if (= (A092391 i) n) (A227643full i) 0)) (A228086 n) (A228087 n))))))
    ;; Auxiliary function add implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    ;; by Antti Karttunen, Aug 16 2013, macro definec can be found in his IntSeq-library.

Formula

From Antti Karttunen, Aug 16 2013: (Start)
a(0)=1; and for n > 0, if A228085(n)=0 then a(n)=1; if A228085(n)=1 then a(n)=1+a(A228086(n)); if A228085(n)=2 then a(n)=1+a(A228086(n))+a(A228087(n)); otherwise (when A228085(n)>2) cannot be computed with this formula, which works only up to n=128.
a(0)=1; and for n > 0, a(n) = 1+Sum_{i=A228086(n)..A228087(n)} [A092391(i) = n]*a(i). (Here [...] denotes the Iverson bracket, resulting in 1 when i+A000120(i) = n and 0 otherwise. This formula works with all n.) (End)
Showing 1-6 of 6 results.