cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227426 Number of partitions into distinct parts without three consecutive parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 7, 9, 11, 13, 16, 20, 23, 28, 33, 39, 46, 55, 63, 75, 87, 101, 117, 136, 156, 180, 207, 238, 272, 311, 355, 404, 460, 522, 592, 670, 758, 855, 965, 1087, 1223, 1373, 1543, 1728, 1936, 2166, 2421, 2702, 3016, 3359, 3741, 4162, 4626, 5136, 5702, 6320, 7002, 7753, 8576, 9479, 10473
Offset: 0

Views

Author

Joerg Arndt, Jul 11 2013

Keywords

Comments

Number of partitions into distinct parts with maximal perimeter.
For n>=1, diagonal of A227344.

Crossrefs

Cf. A000009.

Programs

  • Haskell
    a227426 = p 1 1 where
      p   0 = 1
      p k i m = if m < k then 0 else p (k + i) (3 - i) (m - k) + p (k + 1) 1 m
    -- Reinhard Zumkeller, Jul 14 2013
  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1, 0)+`if`(i>n or t=2, 0, b(n-i, i-1, t+1))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jul 15 2013
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, 0] + If[i>n || t==2, 0, b[n-i, i-1, t+1]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)

Formula

a(n) = c * exp(r*sqrt(n)) / n^(3/4), where r = 1.75931899568... and c = 0.2080626386... - Vaclav Kotesovec, May 24 2018