A227426 Number of partitions into distinct parts without three consecutive parts.
1, 1, 1, 2, 2, 3, 3, 5, 6, 7, 9, 11, 13, 16, 20, 23, 28, 33, 39, 46, 55, 63, 75, 87, 101, 117, 136, 156, 180, 207, 238, 272, 311, 355, 404, 460, 522, 592, 670, 758, 855, 965, 1087, 1223, 1373, 1543, 1728, 1936, 2166, 2421, 2702, 3016, 3359, 3741, 4162, 4626, 5136, 5702, 6320, 7002, 7753, 8576, 9479, 10473
Offset: 0
Keywords
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A000009.
Programs
-
Haskell
a227426 = p 1 1 where p 0 = 1 p k i m = if m < k then 0 else p (k + i) (3 - i) (m - k) + p (k + 1) 1 m -- Reinhard Zumkeller, Jul 14 2013
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, 0)+`if`(i>n or t=2, 0, b(n-i, i-1, t+1)))) end: a:= n-> b(n, n, 0): seq(a(n), n=0..80); # Alois P. Heinz, Jul 15 2013
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, 0] + If[i>n || t==2, 0, b[n-i, i-1, t+1]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)
Formula
a(n) = c * exp(r*sqrt(n)) / n^(3/4), where r = 1.75931899568... and c = 0.2080626386... - Vaclav Kotesovec, May 24 2018
Comments