cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A225551 Longest checkmate in king and queen versus king endgame on an n X n chessboard.

Original entry on oeis.org

1, 4, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Examples

			Longest win on an 8x8 chessboard: Ka1 Qb2 - Kf5, 1.Ka1-b1 Kf5-e6! 2.Kb1-c2 Ke6-f5! 3.Kc2-c3 Kf5-e6 4.Kc3-d4! Ke6-f5 5.Qb2-b6! Kf5-g4 6.Kd4-e4 Kg4-g5! 7.Qb6-c6 Kg5-h4 8.Ke4-f4 Kh4-h5! 9.Qc6-d6 Kh5-h4! 10.Qd6-h6#, therefore a(8) = 10.
		

Crossrefs

Formula

Conjecture: For n > 8, a(n) = 2*n-3-floor(n/2).
a(n) ~ 3*n/2.
Empirical g.f.: x^3*(x^8-x^7+x^5-x^4-2*x^3+x^2+3*x+1) / ((x-1)^2*(x+1)). - Colin Barker, May 11 2013

A225552 Longest checkmate in king and rook versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 7, 10, 12, 14, 16, 18, 21, 23, 25, 28, 30, 33, 35, 38, 39, 42, 44, 47, 49, 52, 54, 56, 58, 61, 63, 66, 67, 70, 72, 75, 77, 80, 81, 84, 86, 89, 91, 94, 95, 98, 100, 103, 105, 108, 109, 112, 114, 117, 119, 122, 123
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Examples

			Longest win on an 8 X 8 chessboard: Ka1 Rb2 - Kc3, 1.Ka1-b1 Kc3-d4! 2.Kb1-c2! Kd4-c4 3.Rb2-b8 Kc4-d5 4.Kc2-d3! Kd5-e6 5.Kd3-d4 Ke6-f5 6.Rb8-e8! Kf5-f4 7.Re8-f8 Kf4-g5 8.Kd4-e4! Kg5-g6! 9.Ke4-f4 Kg6-g7! 10.Rf8-f5! Kg7-h6 11.Rf5-f6 Kh6-g7 12.Kf4-f5 Kg7-h7! 13.Rf6-f7 Kh7-h8! 14.Kf5-g5 Kh8-g8! 15.Kg5-g6! Kg8-h8! 16.Rf7-f8#, therefore a(8) = 16.
		

Crossrefs

Formula

Conjecture: For n > 24, a(n) = 2*n - 3 + floor((n+1)/2) - floor(n/6).
a(n) ~ 7*n/3.

Extensions

Terms a(52)-a(54) from Vaclav Kotesovec, May 17 2013

A225555 Longest checkmate in king and princess versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 8, 9, 11, 14, 17, 21, 24, 26, 30, 33, 37, 41, 44, 48, 51, 55, 59, 63, 67, 70, 75, 79, 83, 87, 91, 96, 101, 104, 109, 114, 118, 123, 127, 132, 136, 141, 145, 151, 154
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

A princess moves like a bishop and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 PRc1 - Kc2, 1.PRc1-f4 Kc2-b3 2.Ka1-b1 Kb3-c3! 3.Kb1-c1! Kc3-d4 4.Kc1-d2! Kd4-e4! 5.PRf4-e3! Ke4-e5! 6.Kd2-d3! Ke5-d6 7.Kd3-e4! Kd6-c7 8.Ke4-d5 Kc7-d7! 9.PRe3-f4 Kd7-e7! 10.PRf4-e5! Ke7-e8! 11.Kd5-d6 Ke8-d8 12.PRe5-f6 Kd8-c8! 13.Kd6-c6! Kc8-b8! 14.PRf6-d4! Kb8-a8 15.Kc6-b6! Ka8-b8! 16.PRd4-e6! Kb8-a8! 17.PRe6-c7#, therefore a(8) = 17.
		

Crossrefs

Extensions

Terms a(41)-a(42) from Vaclav Kotesovec, Jul 19 2013

A225556 Longest checkmate in king, bishop and knight versus king endgame on an n X n chessboard.

Original entry on oeis.org

7, 14, 13, 22, 21, 33, 29, 47, 39, 64, 50, 78, 63, 93, 76, 112, 90, 131, 105, 151, 121, 171
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

If n is odd then the bishop must be on a black square.

Examples

			Longest win on an 8 X 8 chessboard: Ka1 Bc1 Sb1 - Kc2, 1.Bc1-d2 Kc2-b3! 2.Bd2-f4 Kb3-c2! 3.Ka1-a2! Kc2-d3! 4.Ka2-b3! Kd3-e4 5.Bf4-h2 Ke4-d5 6.Kb3-c3 Kd5-e4 7.Sb1-d2! Ke4-d5! 8.Kc3-d3! Kd5-c5! 9.Sd2-c4! Kc5-b5 10.Kd3-d4 Kb5-c6! 11.Bh2-g3 Kc6-b7! 12.Kd4-d5 Kb7-a7! 13.Kd5-c6! Ka7-a6 14.Bg3-h2 Ka6-a7! 15.Sc4-b6! Ka7-a6! 16.Bh2-b8! Ka6-a5! 17.Sb6-d5! Ka5-a4! 18.Kc6-c5 Ka4-b3! 19.Sd5-b4! Kb3-b2! 20.Bb8-f4! Kb2-c3! 21.Bf4-g5 Kc3-b3! 22.Bg5-f6 Kb3-a4 23.Kc5-c4! Ka4-a5! 24.Bf6-d8! Ka5-a4! 25.Sb4-d3! Ka4-a3! 26.Bd8-e7 Ka3-a4! 27.Sd3-c5! Ka4-a3! 28.Kc4-c3! Ka3-a2! 29.Sc5-d3! Ka2-b1! 30.Kc3-b3! Kb1-a1! 31.Kb3-c2! Ka1-a2! 32.Sd3-c1! Ka2-a1! 33.Be7-f6#, therefore a(8) = 33.
		

Crossrefs

Formula

Conjecture: a(n) ~ n^2/6 + 3*n if n is even and a(n) ~ n^2/6 + 2*n if n is odd.

Extensions

a(21) from Vaclav Kotesovec, Jan 11 2017
a(22) from Vaclav Kotesovec, Jan 15 2017
a(23) from Vaclav Kotesovec, Jun 22 2017
a(24) from Vaclav Kotesovec, Jun 30 2017

A225553 Longest checkmate in king and amazon versus king endgame on an n X n chessboard.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 AMb1 - Kd4, 1.AMb1-f5! Kd4-c4! 2.Ka1-b1 Kc4-b4! 3.Kb1-b2 Kb4-a4 4.AMf5-c5#, therefore a(8) = 4.
		

Crossrefs

Formula

Conjecture: for n > 10, a(n) = floor((n+2)/2).
Empirical g.f.: -x^4*(x^9-x^8+x^4-x-1) / ((x-1)^2*(x+1)). - Colin Barker, May 11 2013

A225554 Longest checkmate in king and empress versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 13, 14, 16, 18, 19, 21, 23, 25, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 66, 68
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

An empress moves like a rook and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 EMb1 - Kd4, 1.Ka1-a2 Kd4-e5 2.Ka2-b3 Ke5-f4 3.Kb3-c3 Kf4-e5 4.EMb1-b6! Ke5-f4 5.Kc3-d4 Kf4-g5 6.Kd4-e4 Kg5-g4! 7.EMb6-e6 Kg4-g3! 8.EMe6-f4! Kg3-h2! 9.Ke4-f3! Kh2-g1! 10.Kf3-g3 Kg1-h1! 11.EMf4-f1#, therefore a(8) = 11.
		

Crossrefs

Formula

Conjecture: a(n) ~ 7*n/4.

A225557 Longest checkmate in king and two bishops versus king endgame on an n X n chessboard.

Original entry on oeis.org

1, 9, 11, 13, 16, 19, 21, 24, 26, 29, 32, 35, 38, 40, 44, 46, 49, 52, 55, 58
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Examples

			Longest win on an 8x8 chessboard: Ka1 Bd1 Bb4 - Kc4, 1.Bb4-d6 Kc4-d5! 2.Bd6-g3 Kd5-c6 3.Ka1-b1 Kc6-d5 4.Kb1-c1 Kd5-c6 5.Kc1-c2 Kc6-d5 6.Kc2-d3! Kd5-e6 7.Kd3-e4! Ke6-e7 8.Ke4-e5 Ke7-d7! 9.Ke5-d5 Kd7-e8 10.Bd1-h5 Ke8-e7 11.Bg3-e5! Ke7-d8 12.Kd5-d6! Kd8-c8! 13.Kd6-c6! Kc8-d8! 14.Be5-f6 Kd8-c8! 15.Bh5-g6 Kc8-b8! 16.Kc6-b6! Kb8-a8 17.Bg6-f5 Ka8-b8! 18.Bf6-e5! Kb8-a8! 19.Bf5-e4#, therefore a(8) = 19.
		

Crossrefs

Formula

Conjecture: a(n) ~ 11*n/4.

Extensions

a(21)-a(22) from Vaclav Kotesovec, Jan 11 2017
Showing 1-7 of 7 results.