cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A225552 Longest checkmate in king and rook versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 7, 10, 12, 14, 16, 18, 21, 23, 25, 28, 30, 33, 35, 38, 39, 42, 44, 47, 49, 52, 54, 56, 58, 61, 63, 66, 67, 70, 72, 75, 77, 80, 81, 84, 86, 89, 91, 94, 95, 98, 100, 103, 105, 108, 109, 112, 114, 117, 119, 122, 123
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Examples

			Longest win on an 8 X 8 chessboard: Ka1 Rb2 - Kc3, 1.Ka1-b1 Kc3-d4! 2.Kb1-c2! Kd4-c4 3.Rb2-b8 Kc4-d5 4.Kc2-d3! Kd5-e6 5.Kd3-d4 Ke6-f5 6.Rb8-e8! Kf5-f4 7.Re8-f8 Kf4-g5 8.Kd4-e4! Kg5-g6! 9.Ke4-f4 Kg6-g7! 10.Rf8-f5! Kg7-h6 11.Rf5-f6 Kh6-g7 12.Kf4-f5 Kg7-h7! 13.Rf6-f7 Kh7-h8! 14.Kf5-g5 Kh8-g8! 15.Kg5-g6! Kg8-h8! 16.Rf7-f8#, therefore a(8) = 16.
		

Crossrefs

Formula

Conjecture: For n > 24, a(n) = 2*n - 3 + floor((n+1)/2) - floor(n/6).
a(n) ~ 7*n/3.

Extensions

Terms a(52)-a(54) from Vaclav Kotesovec, May 17 2013

A225555 Longest checkmate in king and princess versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 8, 9, 11, 14, 17, 21, 24, 26, 30, 33, 37, 41, 44, 48, 51, 55, 59, 63, 67, 70, 75, 79, 83, 87, 91, 96, 101, 104, 109, 114, 118, 123, 127, 132, 136, 141, 145, 151, 154
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

A princess moves like a bishop and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 PRc1 - Kc2, 1.PRc1-f4 Kc2-b3 2.Ka1-b1 Kb3-c3! 3.Kb1-c1! Kc3-d4 4.Kc1-d2! Kd4-e4! 5.PRf4-e3! Ke4-e5! 6.Kd2-d3! Ke5-d6 7.Kd3-e4! Kd6-c7 8.Ke4-d5 Kc7-d7! 9.PRe3-f4 Kd7-e7! 10.PRf4-e5! Ke7-e8! 11.Kd5-d6 Ke8-d8 12.PRe5-f6 Kd8-c8! 13.Kd6-c6! Kc8-b8! 14.PRf6-d4! Kb8-a8 15.Kc6-b6! Ka8-b8! 16.PRd4-e6! Kb8-a8! 17.PRe6-c7#, therefore a(8) = 17.
		

Crossrefs

Extensions

Terms a(41)-a(42) from Vaclav Kotesovec, Jul 19 2013

A225556 Longest checkmate in king, bishop and knight versus king endgame on an n X n chessboard.

Original entry on oeis.org

7, 14, 13, 22, 21, 33, 29, 47, 39, 64, 50, 78, 63, 93, 76, 112, 90, 131, 105, 151, 121, 171
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

If n is odd then the bishop must be on a black square.

Examples

			Longest win on an 8 X 8 chessboard: Ka1 Bc1 Sb1 - Kc2, 1.Bc1-d2 Kc2-b3! 2.Bd2-f4 Kb3-c2! 3.Ka1-a2! Kc2-d3! 4.Ka2-b3! Kd3-e4 5.Bf4-h2 Ke4-d5 6.Kb3-c3 Kd5-e4 7.Sb1-d2! Ke4-d5! 8.Kc3-d3! Kd5-c5! 9.Sd2-c4! Kc5-b5 10.Kd3-d4 Kb5-c6! 11.Bh2-g3 Kc6-b7! 12.Kd4-d5 Kb7-a7! 13.Kd5-c6! Ka7-a6 14.Bg3-h2 Ka6-a7! 15.Sc4-b6! Ka7-a6! 16.Bh2-b8! Ka6-a5! 17.Sb6-d5! Ka5-a4! 18.Kc6-c5 Ka4-b3! 19.Sd5-b4! Kb3-b2! 20.Bb8-f4! Kb2-c3! 21.Bf4-g5 Kc3-b3! 22.Bg5-f6 Kb3-a4 23.Kc5-c4! Ka4-a5! 24.Bf6-d8! Ka5-a4! 25.Sb4-d3! Ka4-a3! 26.Bd8-e7 Ka3-a4! 27.Sd3-c5! Ka4-a3! 28.Kc4-c3! Ka3-a2! 29.Sc5-d3! Ka2-b1! 30.Kc3-b3! Kb1-a1! 31.Kb3-c2! Ka1-a2! 32.Sd3-c1! Ka2-a1! 33.Be7-f6#, therefore a(8) = 33.
		

Crossrefs

Formula

Conjecture: a(n) ~ n^2/6 + 3*n if n is even and a(n) ~ n^2/6 + 2*n if n is odd.

Extensions

a(21) from Vaclav Kotesovec, Jan 11 2017
a(22) from Vaclav Kotesovec, Jan 15 2017
a(23) from Vaclav Kotesovec, Jun 22 2017
a(24) from Vaclav Kotesovec, Jun 30 2017

A225553 Longest checkmate in king and amazon versus king endgame on an n X n chessboard.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 AMb1 - Kd4, 1.AMb1-f5! Kd4-c4! 2.Ka1-b1 Kc4-b4! 3.Kb1-b2 Kb4-a4 4.AMf5-c5#, therefore a(8) = 4.
		

Crossrefs

Formula

Conjecture: for n > 10, a(n) = floor((n+2)/2).
Empirical g.f.: -x^4*(x^9-x^8+x^4-x-1) / ((x-1)^2*(x+1)). - Colin Barker, May 11 2013

A225554 Longest checkmate in king and empress versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 13, 14, 16, 18, 19, 21, 23, 25, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 66, 68
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

An empress moves like a rook and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 EMb1 - Kd4, 1.Ka1-a2 Kd4-e5 2.Ka2-b3 Ke5-f4 3.Kb3-c3 Kf4-e5 4.EMb1-b6! Ke5-f4 5.Kc3-d4 Kf4-g5 6.Kd4-e4 Kg5-g4! 7.EMb6-e6 Kg4-g3! 8.EMe6-f4! Kg3-h2! 9.Ke4-f3! Kh2-g1! 10.Kf3-g3 Kg1-h1! 11.EMf4-f1#, therefore a(8) = 11.
		

Crossrefs

Formula

Conjecture: a(n) ~ 7*n/4.

A225557 Longest checkmate in king and two bishops versus king endgame on an n X n chessboard.

Original entry on oeis.org

1, 9, 11, 13, 16, 19, 21, 24, 26, 29, 32, 35, 38, 40, 44, 46, 49, 52, 55, 58
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Examples

			Longest win on an 8x8 chessboard: Ka1 Bd1 Bb4 - Kc4, 1.Bb4-d6 Kc4-d5! 2.Bd6-g3 Kd5-c6 3.Ka1-b1 Kc6-d5 4.Kb1-c1 Kd5-c6 5.Kc1-c2 Kc6-d5 6.Kc2-d3! Kd5-e6 7.Kd3-e4! Ke6-e7 8.Ke4-e5 Ke7-d7! 9.Ke5-d5 Kd7-e8 10.Bd1-h5 Ke8-e7 11.Bg3-e5! Ke7-d8 12.Kd5-d6! Kd8-c8! 13.Kd6-c6! Kc8-d8! 14.Be5-f6 Kd8-c8! 15.Bh5-g6 Kc8-b8! 16.Kc6-b6! Kb8-a8 17.Bg6-f5 Ka8-b8! 18.Bf6-e5! Kb8-a8! 19.Bf5-e4#, therefore a(8) = 19.
		

Crossrefs

Formula

Conjecture: a(n) ~ 11*n/4.

Extensions

a(21)-a(22) from Vaclav Kotesovec, Jan 11 2017

A227437 Longest checkmate in king and 3 knights versus king endgame on an n X n chessboard.

Original entry on oeis.org

10, 10, 16, 18, 21, 25, 29, 33, 36, 41, 45, 50, 55, 60, 66
Offset: 4

Views

Author

Vaclav Kotesovec, Jul 11 2013

Keywords

Comments

With 16 GB of memory it was possible to explore this ending on boards up to 15 X 15. On these boards the ending is a general win. I think that from some greater n this ending is drawn (and the sequence is finite), but this is only conjecture. - Vaclav Kotesovec, Jul 19 2013

Examples

			Longest win on an 8 X 8 chessboard: Ka1 Sa2 Sb1 Sg1 - Kf2, 1.Sg1-h3! Kf2-g3! 2.Sh3-g5! Kg3-f4! 3.Sg5-f7! Kf4-g3 4.Ka1-b2 Kg3-f4 5.Kb2-c2 Kf4-g3 6.Kc2-d2 Kg3-f4 7.Sb1-a3 Kf4-f3 8.Kd2-d3 Kf3-f4! 9.Sa3-c4 Kf4-f5! 10.Sc4-e5 Kf5-f4 11.Sa2-b4 Kf4-f5! 12.Sb4-c6 Kf5-e6 13.Kd3-e4! Ke6-f6! 14.Sc6-d4! Kf6-e7 15.Ke4-f5! Ke7-f8! 16.Kf5-e6! Kf8-g7 17.Sd4-f5! Kg7-f8 18.Se5-g6! Kf8-g8! 19.Ke6-f6! Kg8-h7! 20.Sf7-g5! Kh7-g8! 21.Sf5-e7#, therefore a(8) = 21.
(In the above, 'S' (for "Springer" in German?) stands for knight moves.) - _M. F. Hasler_, Apr 22 2022
		

Crossrefs

Extensions

a(16) from Vaclav Kotesovec, Jan 07 2017
a(17) from Vaclav Kotesovec, Sep 05 2017
a(18) from Vaclav Kotesovec, Jan 24 2018

A274684 White to move: King and Queen vs. King: Number of positions with mate in n.

Original entry on oeis.org

2448, 5012, 9064, 19964, 26164, 32064, 32104, 15000, 2680, 8
Offset: 1

Views

Author

David A. Corneth, Jul 02 2016

Keywords

Comments

After n = 10, all terms are 0 so the sequence ends at n = 10.
GBR code is 1000. Longest checkmate under perfect play is in 10 (FEN 8/8/8/5k2/8/8/1Q6/K7 w - - 0 1). For path of moves, see k4it-link. Data is found using Kryukov link, "Endgame Tablebases online". FEN is found in Kryukov link, "Longest checkmates in chess".
The listed examples, or more generally up to 6 man positions can be examined using the k4it link.

References

  • Hans Zellner, International Computer Chess Association Journal, 1987, Vol. 10, No. 2, p. 95.

Crossrefs

Extensions

Data and comments changed by Vaclav Kotesovec, Aug 01 2016
Showing 1-8 of 8 results.