A227541 a(n) = floor(13*n^2/4).
0, 3, 13, 29, 52, 81, 117, 159, 208, 263, 325, 393, 468, 549, 637, 731, 832, 939, 1053, 1173, 1300, 1433, 1573, 1719, 1872, 2031, 2197, 2369, 2548, 2733, 2925, 3123, 3328, 3539, 3757, 3981, 4212, 4449, 4693, 4943, 5200, 5463, 5733, 6009
Offset: 0
Examples
Counting dots in the concentric dotted 13-gons described above in a comment: a(2*k), k >= 1: (2-1)*13 = 13, (1+(4-1))*13 = 52, (1+3+(6-1))*13 = 117, (1+3+5+7)*13 = 208, ... a(2*k+1), k >= 0: 3, 3+(3-1)*13 = 29, 3+(2+(5-1))*13 = 81, 3+2*(1+2+3)*13 = 159, ... (a dotted triangle is put into the middle of the k concentric 13-gons).
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[ Floor(13*n^2/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
A227541:=n->floor(13*n^2/4); seq(A227541(n), n=0..50); # Wesley Ivan Hurt, Jun 09 2014
-
Mathematica
Table[Floor[13*n^2/4], {n, 0, 50}] (* Wesley Ivan Hurt, Jun 09 2014 *)
Formula
a(n) = 13*n^2/4+((-1)^n-1)/8, n >= 0 (use even or odd n to prove it).
G.f.: x*(3+7*x+3*x^2)/((1-x)^3*(1+x)).
a(2*k) = k^2*13, k >= 0.
a(2*k+1) = 3 + k*(k+1)*13, k >= 0.
a(n) = a(-n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Bruno Berselli, Aug 08 2013
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+5)/2). - Wesley Ivan Hurt, Mar 12 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(Pi/(2*sqrt(13)))*Pi/sqrt(13). - Amiram Eldar, Jul 30 2024
Comments