A227544 Expansion of e.g.f. 1/(1 - sin(6*x))^(1/6).
1, 1, 7, 55, 721, 11761, 240247, 5801095, 162512161, 5171130721, 184337942887, 7275081518935, 314918762166001, 14834964193292881, 755507853144691927, 41362173671901329575, 2422478811455080626241, 151132171549872325122241, 10006051653759338150151367, 700695219796759105368529015
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 55*x^3/3! + 721*x^4/4! + 11761*x^5/5! + ... where A(x)^3 = 1 + 3*x + 27*x^2/2! + 297*x^3/3! + 4617*x^4/4! + 87723*x^5/5! + ... and 1/A(x)^3 = 1 - 3*x - 9*x^2/2! + 27*x^3/3! + 81*x^4/4! - 243*x^5/5! + ... which illustrates 1/A(x)^3 = cos(3*x) - sin(3*x). O.g.f.: 1/(1-x - 6*1*1*x^2/(1-7*x - 6*2*4*x^2/(1-13*x - 6*3*7*x^2/(1-19*x - 6*4*10*x^2/(1-25*x - 6*5*13*x^2/(1-...)))))), a continued fraction.
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[1/(1-Sin[6*x])^(1/6), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
-
PARI
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(3*X)-sin(3*X))^(-1/3), n)} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^3/subst(A^3, x, -x)))); n!*polcoeff(A, n)} for(n=0,20,print1(a(n),", "))
-
PARI
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j)); a008542(n) = prod(k=0, n-1, 6*k+1); a(n) = sum(k=0, n, a008542(k)*(6*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025
Formula
E.g.f. A(x) satisfies:
(1) A(x) = (cos(3*x) - sin(3*x))^(-1/3).
(2) A(x)^3/A(-x)^3 = 1/cos(6*x) + tan(6*x).
(3) A(x) = exp( Integral A(x)^3/A(-x)^3 dx ).
O.g.f.: 1/G(0) where G(k) = 1 - (6*k+1)*x - 6*(k+1)*(3*k+1)*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * 2^(2*n+1/2) * 3^n / (Gamma(1/3) * n^(2/3) * Pi^(n+1/3)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A008542(k) * (6*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025
Comments