A227545 The number of idempotents in the Brauer monoid on [1..n].
1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016, 38350749144768938770432
Offset: 0
Keywords
Links
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
- T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921.
Programs
-
GAP
for i in [1..11] do Print(NrIdempotents(BrauerMonoid(i)), "\n"); od;
-
Mathematica
nn = 44; ee = Table[0, nn+1]; ee[[1]] = 1; e[n_] := e[n] = ee[[n+1]]; For[n = 1, n <= nn, n++, ee[[n+1]] = Sum[Binomial[n-1, 2i-1] (2i-1)! e[n-2i], {i, 1, n/2}] + Sum[Binomial[n-1, 2i] (2i+1)! e[n-2i-1], {i, 0, (n-1)/2}] ]; ee (* Jean-François Alcover, Jul 21 2018, after Joerg Arndt *)
-
PARI
N=44; E=vector(N+1); E[1]=1; e(n)=E[n+1]; { for (n=1, N, E[n+1]= sum(i=1,n\2,binomial(n-1,2*i-1)*(2*i-1)!*e(n-2*i)) + sum(i=0,(n-1)\2,binomial(n-1,2*i)*(2*i+1)!*e(n-2*i-1)) ); } print(E); \\ Joerg Arndt, Oct 12 2016
Extensions
Terms a(13)-a(17) from James East, Dec 23 2013
More terms from Joerg Arndt, Oct 12 2016
Comments