A227577 Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.
1, -1, 1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 1, 1, 1, 0, -1, -1, -5, -1, -1, 0, 17, 17, 13, 5, -5, -13, -17, -17, 0, 17, 17, 47, 13, 47, 17, 17, 0, -31, -31, -107, -73, -13, 13, 73, 107, 31, 31, 0, -31, -31, -355
Offset: 0
Keywords
Examples
Read by antidiagonals: 1; -1/2, 1/2; 0, -1/2, 0; 1/4, 1/4, -1/4, -1/4; 0, 1/4, 1/2, 1/4, 0; -1/2, -1/2, -1/4, 1/4, 1/2, 1/2; 0, -1/2, - 1, -5/4, -1, -1/2, 0; ... Row sums: 1, 0, -1/2, 0, 1, 0, -17/4, 0, ... = 2*A198631(n+1)/A006519(n+2). Denominators: 1, 1, 2, 1, 1, 1, 4, 1, ... = A160467(n+2)?
Links
- Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
- OEIS Wiki, Autosequence
Programs
-
Maple
DifferenceTableEulerPolynomials := proc(n) local A,m,k,x; A := array(0..n,0..n); x := 1; for m from 0 to n do for k from 0 to n do A[m,k]:= 0 od od; for m from 0 to n do A[m,0] := euler(m,x); for k from m-1 by -1 to 0 do A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od; LinearAlgebra[Transpose](convert(A, Matrix)) end: DifferenceTableEulerPolynomials(7); # Peter Luschny, Jul 18 2013
-
Mathematica
t[0, 0] = 1; t[0, k_] := EulerE[k, 1]; t[n_, 0] := -t[0, n]; t[n_, k_] := t[n, k] = t[n-1, k+1] - t[n-1, k]; Table[t[n-k, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013 *)
-
Sage
def DifferenceTableEulerPolynomialsEvaluatedAt1(n) : @CachedFunction def ep1(n): # Euler polynomial at x=1 if n < 2: return 1 - n/2 s = add(binomial(n,k)*ep1(k) for k in (0..n-1)) return 1 - s/2 T = matrix(QQ, n) for m in range(n) : # Compute difference table T[m,0] = ep1(m) for k in range(m-1,-1,-1) : T[k,m-k] = T[k+1,m-k-1] - T[k,m-k-1] return T def A227577_list(m): D = DifferenceTableEulerPolynomialsEvaluatedAt1(m) return [D[k,n-k].numerator() for n in range(m) for k in (0..n)] A227577_list(12) # Peter Luschny, Jul 18 2013
Extensions
Corrected by Jean-François Alcover, Jul 17 2013
Comments