cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227344 Triangle read by rows, partitions into distinct parts by perimeter.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 0, 7, 0, 0, 0, 0, 1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 16, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 20, 0
Offset: 1

Views

Author

Joerg Arndt, Jul 08 2013

Keywords

Comments

The perimeter of a partition is the sum of all parts p that do not have two neighbors (that is, not both p-1 and p+1 are parts).
Row sums are A000009.
Column sums are A122129 (noted by Patrick Devlin).

Examples

			Triangle starts (dots for zeros):
01: 1
02: . 1
03: . . 2
04: . . . 2
05: . . . . 3
06: . . . 1 . 3
07: . . . . . . 5
08: . . . . . . . 6
09: . . . . . 1 . . 7
10: . . . . 1 . . . . 9
11: . . . . . . . . 1 . 11
12: . . . . . . . 1 . 1 . 13
13: . . . . . . . . 1 . 1 . 16
14: . . . . . . 1 . . . . 1 . 20
15: . . . . . 1 . . . 1 . 1 1 . 23
16: . . . . . . . . . . 2 . 1 1 . 28
17: . . . . . . . . . . . 2 . 1 2 . 33
18: . . . . . . . . 1 . . 1 2 . 1 2 . 39
19: . . . . . . . . . 1 . . 1 1 1 1 3 . 46
20: . . . . . . . 1 . . . . . 1 1 2 1 3 . 55
21: . . . . . . 1 . . . . . . 2 2 1 2 1 4 . 63
22: . . . . . . . . . . 1 . 1 . 2 1 1 2 2 4 . 75
23: . . . . . . . . . . . 1 . 1 . 2 1 3 2 2 5 . 87
24: . . . . . . . . . . . . 1 . 1 2 3 . 4 2 3 5 . 101
25: . . . . . . . . . 1 . . . 1 . 1 1 3 . 6 2 3 7 . 117
26: . . . . . . . . . . 1 . 1 . . . 2 1 3 . 7 2 4 8 . 136
27: . . . . . . . . 1 . . . . 1 . . . 5 2 2 1 8 3 4 9 . 156
28: . . . . . . . 1 . . . . . . 1 1 . . 4 2 3 2 8 4 5 11 . 180
29: . . . . . . . . . . . . . . 1 2 1 . . 4 3 3 3 9 5 5 13 . 207
30: . . . . . . . . . . . 1 . . 1 1 1 1 . 3 6 2 2 5 9 6 6 14 . 238
		

Crossrefs

Cf. A227345 (partitions by boundary size).
Cf. A227426 (diagonal: number of partitions with maximal perimeter).
Cf. A227538 (smallest k with positive T(n,k)), A227614 (second lower diagonal). - Alois P. Heinz, Jul 17 2013

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x^(i+1), 1),
          expand(`if`(i<1, 0, `if`(t>1, x^(i+1), 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x^(i+1), 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jul 16 2013
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t>1, x^(i+1), 1], Expand[If[i<1, 0, If[t>1, x^(i+1), 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t == 2, x^(i+1), 1]*b[n-i, i-1, Quotient[t, 2]+2]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n, 0]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
Showing 1-1 of 1 results.