A227635 G.f.: Sum_{n>=1} x^n * (1+x)^n / (1-x^n).
1, 3, 5, 8, 12, 18, 28, 42, 65, 103, 160, 252, 404, 644, 1026, 1648, 2654, 4269, 6873, 11086, 17898, 28902, 46681, 75427, 121920, 197116, 318731, 515425, 833593, 1348316, 2181023, 3528149, 5707571, 9233632, 14938484, 24168539, 39102325, 63264687, 102358843, 165612728
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 18*x^6 + 28*x^7 + 42*x^8 +... where A(x) = x*(1+x)/(1-x) + x^2*(1+x)^2/(1-x^2) + x^3*(1+x)^3/(1-x^3) + x^4*(1+x)^4/(1-x^4) + x^5*(1+x)^5/(1-x^5) + x^6*(1+x)^6/(1-x^6) +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A097939.
Programs
-
PARI
{a(n)=polcoeff(sum(m=1,n,x^m*(1+x)^m/(1-x^m +x*O(x^n)) ),n)} for(n=1,40,print1(a(n),", "))
-
PARI
{a(n)=polcoeff(sum(m=1,n,x^m*sumdiv(m,d,(1+x +x*O(x^n))^d) ),n)} for(n=1,40,print1(a(n),", "))
Formula
G.f.: Sum_{n>=1} x^n * Sum_{d|n} (1+x)^d.
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, Oct 28 2014
Comments