A227690 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles reduced for symmetry; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 6, 6, 5, 1, 1, 1, 1, 9, 10, 13, 10, 9, 1, 1, 1, 1, 12, 21, 39, 39, 21, 12, 1, 1, 1, 1, 21, 39, 115, 77, 115, 39, 21, 1, 1, 1, 1, 30, 82, 295, 521, 521, 295, 82, 30, 1, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 4, 5, 9, 12, 21, ... 1, 1, 2, 3, 6, 10, 21, 39, 82, ... 1, 1, 4, 6, 13, 39, 115, 295, 861, ... 1, 1, 5, 10, 39, 77, 521, 1985, 8038, ... 1, 1, 9, 21, 115, 521, 1494, 15129, 83609, ... 1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, ... 1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023, ... ... A(4,3) = 6 because there are 6 ways to tile a 3 X 4 rectangle by subsquares, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct: ._____ _. ._______. ._______. | |_| | | | | |_|_| | |_| |___|_ _| |___| | |_____|_| |_|_|_|_| |_|_|___| ._______. ._______. ._______. | |_|_| |_| |_| |_|_|_|_| |___|_|_| |_|___|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|
Links
- Christopher Hunt Gribble, Antidiagonals n = 0..15, flattened
- Christopher Hunt Gribble, C++ program