A228133
Smaller of two consecutive fourth powers which are anagrams of each other.
Original entry on oeis.org
256, 3801203878441216, 37676241378424125849856, 458674242952187370600625, 544126177359173833650625, 685460284523397245894656, 1608863370428370905668561, 3002790971698825459360000, 25230797696265342385603441, 287990971036503268357824016
Offset: 1
256 and 625 are two successive fourth powers.
-
with(numtheory):for n from 1 to 2000000 do:p1:=n^4:p2:= (n+1)^4:pp1:=convert(p1,base,10): pp2:=convert(p2,base,10):n1:=sort(pp1):n2:=sort(pp2): if n1=n2 then printf(`%d, `,p1):else fi:od:
A337784
Smaller of two consecutive oblong numbers which are anagrams of each other.
Original entry on oeis.org
23256, 530712, 809100, 11692980, 17812620, 20245500, 22834062, 23527350, 29154600, 83768256, 182236500, 189847062, 506227500, 600127506, 992218500, 1363566402, 1640209500, 2175895962, 2422657620, 2477899062, 2520190602, 3041687952, 3764129256, 4760103042
Offset: 1
530712 is in the sequence because it is an oblong number, 530712 = 728 * 729, and the next oblong number, 532170 = 729 * 730, is an anagram of 530712.
-
s = {}; o1 = 1; d1 = Sort @ IntegerDigits[o1]; Do[o2 = n*(n + 1); d2 = Sort @ IntegerDigits[o2]; If[d2 == d1, AppendTo[s, o1]]; o1 = o2; d1 = d2, {n, 2, 70000}]; s (* Amiram Eldar, Sep 21 2020 *)
-
ok(k) = {my(b, m=0); if(issquare(4*k + 1), b=truncate(sqrt(4*k + 1) - 1)/2; if(vecsort(digits(k)) == vecsort(digits((b + 1)*(b + 2))), m = 1)); m}
Showing 1-2 of 2 results.
Comments