A227736 Irregular table read by rows: the first entry of n-th row is length of run of rightmost identical bits (either 0 or 1, equal to n mod 2), followed by length of the next run of bits, etc., in the binary representation of n, when scanned from the least significant to the most significant end.
1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 3, 4, 4, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1, 3, 1, 4, 5, 5, 1, 1, 4, 1, 1, 1, 3, 1
Offset: 1
Examples
Table begins as: Row n in Terms on n binary that row 1 1 1; 2 10 1,1; 3 11 2; 4 100 2,1; 5 101 1,1,1; 6 110 1,2; 7 111 3; 8 1000 3,1; 9 1001 1,2,1; 10 1010 1,1,1,1; 11 1011 2,1,1; 12 1100 2,2; 13 1101 1,1,2; 14 1110 1,3; 15 1111 4; 16 10000 4,1; etc. with the terms of row n appearing in reverse order compared how the runs of the same length appear in the binary expansion of n (Cf. A101211). From _Omar E. Pol_, Sep 08 2013: (Start) Illustration of initial terms: --------------------------------------- k m Diagram Composition --------------------------------------- . _ 1 1 |_|_ 1; 2 1 |_| | 1, 1, 2 2 |_ _|_ 2; 3 1 |_ | | 2, 1, 3 2 |_|_| | 1, 1, 1, 3 3 |_| | 1, 2, 3 4 |_ _ _|_ 3; 4 1 |_ | | 3, 1, 4 2 |_|_ | | 1, 2, 1, 4 3 |_| | | | 1, 1, 1, 1, 4 4 |_ _|_| | 2, 1, 1, 4 5 |_ | | 2, 2, 4 6 |_|_| | 1, 1, 2, 4 7 |_| | 1, 3, 4 8 |_ _ _ _|_ 4; 5 1 |_ | | 4, 1, 5 2 |_|_ | | 1, 3, 1, 5 3 |_| | | | 1, 1, 2, 1, 5 4 |_ _|_ | | 2, 2, 1, 5 5 |_ | | | | 2, 1, 1, 1, 5 6 |_|_| | | | 1, 1, 1, 1, 1, 5 7 |_| | | | 1, 2, 1, 1, 5 8 |_ _ _|_| | 3, 1, 1, 5 9 |_ | | 3, 2, 5 10 |_|_ | | 1, 2, 2, 5 11 |_| | | | 1, 1, 1, 2, 5 12 |_ _|_| | 2, 1, 2, 5 13 |_ | | 2, 3, 5 14 |_|_| | 1, 1, 3, 5 15 |_| | 1, 4, 5 16 |_ _ _ _ _| 5; . Also irregular triangle read by rows in which row k lists the compositions of k, k >= 1. Triangle begins: [1]; [1,1], [2]; [2,1], [1,1,1], [1,2],[3]; [3,1], [1,2,1], [1,1,1,1], [2,1,1], [2,2], [1,1,2], [1,3], [4]; [4,1], [1,3,1], [1,1,2,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], [1,2,1,1], [3,1,1], [3,2], [1,2,2], [1,1,1,2], [2,1,2], [2,3], [1,1,3], [1,4], [5]; Row k has length A001792(k-1). Row sums give A001787(k), k >= 1. (End)
Links
- Antti Karttunen, The rows 1..1023 of the table, flattened
- Mikhail Kurkov, Comments on A227736.
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. - _N. J. A. Sloane_, Sep 09 2018. See Procedure 1.
Crossrefs
Programs
-
Haskell
import Data.List (group) a227736 n k = a227736_tabf !! (n-1) !! (k-1) a227736_row n = a227736_tabf !! (n-1) a227736_tabf = map (map length . group) $ tail a030308_tabf -- Reinhard Zumkeller, Aug 11 2014
-
Mathematica
Array[Length /@ Reverse@ Split@ IntegerDigits[#, 2] &, 34] // Flatten (* Michael De Vlieger, Dec 11 2020 *)
-
PARI
apply( {A227736_row(n, r=[1], b=n%2)=while(n\=2, n%2==b && r[#r]++ || [b=1-b, r=concat(r,1)]); r}, [1..22]) \\ M. F. Hasler, Mar 11 2025
-
Python
def A227736_row(n): return[len(list(g))for _,g in groupby(bin(n)[:1:-1])] from itertools import groupby # M. F. Hasler, Mar 11 2025
-
Scheme
(define (A227736 n) (A227186bi (A227737 n) (A227740 n))) ;; The Scheme-function for A227186bi has been given in A227186.
Comments