cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227774 Triangular array read by rows: T(n,k) is the number of rooted identity trees with n nodes having exactly k subtrees from the root.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 3, 6, 5, 1, 12, 11, 2, 25, 22, 5, 52, 49, 12, 113, 104, 28, 2, 247, 232, 65, 4, 548, 513, 152, 13, 1226, 1159, 351, 34, 2770, 2619, 818, 91, 1, 6299, 5989, 1907, 225, 6, 14426, 13734, 4460, 571, 18, 33209, 31729, 10453, 1403, 57, 76851
Offset: 1

Views

Author

Geoffrey Critzer, Jul 30 2013

Keywords

Comments

Row sums = A004111.

Examples

			Triangular array T(n,k) begins:
n\k:   0    1    2   3   4  ...
---+---------------------------
01 :   1;
02 :   .    1;
03 :   .    1;
04 :   .    1,   1;
05 :   .    2,   1;
06 :   .    3,   3;
07 :   .    6,   5,  1;
08 :   .   12,  11,  2;
09 :   .   25,  22,  5;
10 :   .   52,  49, 12;
11 :   .  113, 104, 28,  2;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(
          add(x^j*binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> `if`(n=1, 1,
        (p-> seq(coeff(p, x, k), k=1..degree(p)))(g((n-1)$2))):
    seq(T(n), n=1..25);  # Alois P. Heinz, Jul 30 2013
  • Mathematica
    nn=20;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0==Series[f[x]-x Product[(1+x^i)^a[i],{i,1,nn}],{x,0,nn}],x];A004111=Drop[ Flatten[Table[a[n],{n,0,nn}]/.sol],1];Map[Select[#,#>0&]&, Drop[CoefficientList[Series[x Product[(1 + y x^i)^A004111[[i]],{i,1,nn}],{x,0,nn}],{x,y}],1]]//Grid
  • Python
    from sympy import binomial, Poly, Symbol
    from sympy.core.cache import cacheit
    x=Symbol('x')
    @cacheit
    def b(n, i):return 1 if n==0 else 0 if i<1 else sum([binomial(b(i - 1, i - 1), j)*b(n - i*j, i - 1) for j in range(n//i + 1)])
    @cacheit
    def g(n, i):return 1 if n==0 else 0 if i<1 else sum([x**j*binomial(b(i - 1, i - 1), j)*g(n - i*j, i - 1) for j in range(n//i + 1)])
    def T(n): return [1] if n==1 else Poly(g(n - 1, n - 1)).all_coeffs()[::-1][1:]
    for n in range(1, 26): print(T(n)) # Indranil Ghosh, Aug 28 2017

Formula

G.f.: x * Product_{n>=1} (1 + y * x^n)^A004111(n).
From Alois P. Heinz, Aug 25 2017: (Start)
T(n,k) = Sum_{h=0..n-k} A291529(n-1,h,k).
Sum_{k>=1} k * T(n,k) = A291532(n-1). (End)