A227819 Number T(n,k) of n-node rooted identity trees of height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 2, 5, 4, 1, 0, 0, 0, 2, 8, 9, 5, 1, 0, 0, 0, 1, 12, 18, 14, 6, 1, 0, 0, 0, 1, 17, 34, 33, 20, 7, 1, 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1, 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1, 0, 0, 0, 0, 41, 187, 301, 303, 221, 118, 44, 10, 1
Offset: 1
Examples
: T(6,4) = 3 : T(11,3) = 1 : : o o o : o : : / \ | | : /( )\ : : o o o o : o o o o : : | / \ | : /| | | : : o o o o : o o o o : : | | / \ : | | : : o o o o : o o : : | | | : : : o o o : : Triangle T(n,k) begins: 1; 0, 1; 0, 0, 1; 0, 0, 1, 1; 0, 0, 0, 2, 1; 0, 0, 0, 2, 3, 1; 0, 0, 0, 2, 5, 4, 1; 0, 0, 0, 2, 8, 9, 5, 1; 0, 0, 0, 1, 12, 18, 14, 6, 1; 0, 0, 0, 1, 17, 34, 33, 20, 7, 1; 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1; 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0, add(binomial(b((i-1)$2, k-1), j)*b(n-i*j, i-1, k), j=0..n/i))) end: T:= (n, k)-> b((n-1)$2, k) -`if`(k=0, 0, b((n-1)$2, k-1)): seq(seq(T(n, k), k=0..n-1), n=1..15);
-
Mathematica
Drop[Transpose[Map[PadRight[#,15]&,Table[f[n_]:=Nest[ CoefficientList[ Series[ Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,15}],x]&,{1},n]; f[m]-PadRight[f[m-1],Length[f[m]]],{m,1,15}]]],1]//Grid (* Geoffrey Critzer, Aug 01 2013 *)