cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227819 Number T(n,k) of n-node rooted identity trees of height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 2, 5, 4, 1, 0, 0, 0, 2, 8, 9, 5, 1, 0, 0, 0, 1, 12, 18, 14, 6, 1, 0, 0, 0, 1, 17, 34, 33, 20, 7, 1, 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1, 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1, 0, 0, 0, 0, 41, 187, 301, 303, 221, 118, 44, 10, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 31 2013

Keywords

Examples

			:   T(6,4) = 3              :  T(11,3) = 1  :
:     o       o       o     :        o      :
:    / \      |       |     :      /( )\    :
:   o   o     o       o     :     o o o o   :
:   |        / \      |     :    /| | |     :
:   o       o   o     o     :   o o o o     :
:   |       |        / \    :   |   |       :
:   o       o       o   o   :   o   o       :
:   |       |       |       :               :
:   o       o       o       :               :
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 0, 2,  1;
  0, 0, 0, 2,  3,   1;
  0, 0, 0, 2,  5,   4,   1;
  0, 0, 0, 2,  8,   9,   5,   1;
  0, 0, 0, 1, 12,  18,  14,   6,  1;
  0, 0, 0, 1, 17,  34,  33,  20,  7,  1;
  0, 0, 0, 1, 23,  61,  72,  54, 27,  8, 1;
  0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1;
		

Crossrefs

Columns k=4-10 give: A038088, A038089, A038090, A038091, A038092, A229403, A229404.
Row sums give: A004111.
Column sums give: A038081.
Largest n with T(n,k)>0 is A038093(k).
Main diagonal and lower diagonals give (offsets may differ): A000012, A001477, A000096, A166830.
T(2n,n) gives A245090.
T(2n+1,n) gives A245091.
Cf. A034781.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
          add(binomial(b((i-1)$2, k-1), j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> b((n-1)$2, k) -`if`(k=0, 0, b((n-1)$2, k-1)):
    seq(seq(T(n, k), k=0..n-1), n=1..15);
  • Mathematica
    Drop[Transpose[Map[PadRight[#,15]&,Table[f[n_]:=Nest[ CoefficientList[ Series[ Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,15}],x]&,{1},n]; f[m]-PadRight[f[m-1],Length[f[m]]],{m,1,15}]]],1]//Grid (* Geoffrey Critzer, Aug 01 2013 *)