cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227855 Numbers of the form x^4 + 4*y^4.

Original entry on oeis.org

0, 1, 4, 5, 16, 20, 64, 65, 80, 81, 85, 145, 256, 260, 320, 324, 325, 340, 405, 580, 625, 629, 689, 949, 1024, 1025, 1040, 1105, 1280, 1296, 1300, 1360, 1620, 1649, 2320, 2401, 2405, 2465, 2500, 2501, 2516, 2581, 2725, 2756, 3125, 3425, 3796, 4096, 4100, 4160
Offset: 1

Views

Author

Alonso del Arte, Oct 31 2013

Keywords

Comments

Since 4 is even, either x or y or both may be negative integers, because their fourth powers will then be positive.
The only prime term in this sequence is 5; this can be proved using Sophie Germain's identity.

Examples

			80 = 2^4 + 4 * 2^4.
81 = 3^4 + 4 * 0^4.
85 = 3^4 + 4 * 1^4.
		

References

  • Titu Andreescu and Rǎzvan Gelca, Mathematical Olympiad Challenges, New York, Birkhäuser (2009), p. 48.

Crossrefs

Subsequences include A000583, A141046 and A001589.

Programs

  • Mathematica
    nn = 10; Union[Select[Flatten[Table[x^4 + 4*y^4, {x, 0, nn}, {y, 0, nn}]], # <= nn^4 &]] (* T. D. Noe, Nov 08 2013 *)
  • PARI
    list(lim)=my(v=List(),t); for(y=0,sqrtnint(lim\4,4), for(x=0, sqrtnint(lim\1-(t=4*y^4),4), listput(v,t+x^4))); Set(v) \\ Charles R Greathouse IV, Nov 07 2013

Formula

x^4 + 4y^4 = (x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2). This is Sophie Germain's identity.