A227874 Numbers n such that tau(n+1) - tau(n) = -2, where tau(n) = the number of divisors of n (A000005).
6, 10, 20, 22, 32, 45, 46, 50, 58, 68, 76, 82, 92, 106, 117, 124, 152, 166, 170, 174, 178, 212, 226, 236, 261, 262, 272, 325, 333, 338, 346, 358, 382, 405, 412, 424, 435, 436, 452, 464, 466, 474, 477, 478, 495, 502, 506, 512, 530, 555, 562, 567, 574, 578, 586
Offset: 1
Keywords
Examples
45 is in sequence because tau(46) - tau(45) = 4 - 6 = -2.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Mathematica
Select[ Range[ 50000], DivisorSigma[0, # ] - 2 == DivisorSigma[0, # + 1] &]
Comments