cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227879 Integer areas of incentral triangles of integer-sided triangles.

Original entry on oeis.org

70, 280, 360, 480, 630, 1120, 1312, 1440, 1750, 1768, 1920, 2132, 2520, 3240, 3430, 4320, 4480, 5248, 5670, 5760, 7000, 7038, 7072, 7680, 7800, 8470, 8528, 9000, 9240, 10080, 11808, 11830, 12000, 12960, 13720, 13950, 14744, 15750, 15912, 17280, 17640, 17920
Offset: 1

Views

Author

Michel Lagneau, Oct 25 2013

Keywords

Comments

The incentral triangle IJK is the Cevian triangle of a triangle ABC with respect to its incenter. It is therefore also the triangle whose vertices are determined by the intersections of the reference triangle's angle bisectors with the respective opposite sides.
The area is given by:
A' = 2*A*a*b*c/((a+b)*(b+c)*(c+a)) where A is the area of the original triangle.
The side lengths are:
a' = a*b*c*sqrt(3+2*(-cos A + cos B + cos C))/((a+b)*(a+c))
b' = a*b*c*sqrt(3+2*(cos A - cos B + cos C))/((b+c)*(b+a))
c' = a*b*c*sqrt(3+2*(cos A + cos B - cos C))/((c+a)*(c+b))
Properties of this sequence:
The areas of the original triangles are integers. The primitive triangles with areas a(n) are 70, 360, 480, 630, 1312, ...
The nonprimitive triangles with areas 4*a(n) are in the sequence.
It appears that if the original triangle is isosceles, a side of the corresponding incenter triangle is an integer.
The following table gives the first values (A', A, a, b, c, t1, t2, t3) where A' is the area of the incentral triangles, A is the area of the reference triangles ABC, a, b, c the integer sides of the original triangles ABC and t1, t2, t3 are the sides of the incentral triangles.
------------------------------------------------------------------------
A'| A | a | b | c | t1 | t2 | t3
------------------------------------------------------------------------
70 | 294| 21| 28| 35|3*sqrt(65)/2 |4*sqrt(85)/3 |7*sqrt(145)/6
280 |1176| 42| 56| 70|3*sqrt(65) |8*sqrt(85)/2 |7*sqrt(145)/3
360 |1452| 55| 55| 66|3*sqrt(89) |3*sqrt(89) | 30
480 |2028| 65| 65|104|4*sqrt(61) |4*sqrt(61) | 40
630 |2646| 63| 84|105|9*sqrt(65)/2 |4*sqrt(85) |7*sqrt(145)/2
1120|4704| 84| 112|140|6*sqrt(65) |16*sqrt(85)/3 |14*sqrt(145)/3
1312|8820| 63| 280|287|36*sqrt(2501)/35|40*sqrt(7585)/63|28*sqrt(9061)/45
1440|5808|110| 110|132|6*sqrt(89) |6*sqrt(89) | 60
1750|7350|105| 140|175|15*sqrt(65)/2 |20*sqrt(85)/3 |35*sqrt(145)/6
1768|8670| 85| 204|221|50*sqrt(13)/3 |12*sqrt(689)/5 |34*sqrt(949)/15
1920|8112|130| 130|208|8*sqrt(61) |8*sqrt(61) | 80
.......................................................

Examples

			70 is in the sequence because the formula A' = 2*A*a*b*c/((a+b)*(b+c)*(c+a)) gives with the initial triangle (21,28,35): A' = 2*294*21*28*35/((21+28)*(28+35)*(35+21)) = 70, with the area A = 294 obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(42*(42-21)*(42-28)*(42-35)) = 294, where s = 42 is the semiperimeter.
		

References

  • C. Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.

Crossrefs

Cf. A188158.

Programs

  • Mathematica
    nn=1000; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s(s-a)(s-b)(s-c); t= 2*Sqrt[area2]*a*b*c/((a+b)*(b+c)*(c+a)); If[0