A227879 Integer areas of incentral triangles of integer-sided triangles.
70, 280, 360, 480, 630, 1120, 1312, 1440, 1750, 1768, 1920, 2132, 2520, 3240, 3430, 4320, 4480, 5248, 5670, 5760, 7000, 7038, 7072, 7680, 7800, 8470, 8528, 9000, 9240, 10080, 11808, 11830, 12000, 12960, 13720, 13950, 14744, 15750, 15912, 17280, 17640, 17920
Offset: 1
Keywords
Examples
70 is in the sequence because the formula A' = 2*A*a*b*c/((a+b)*(b+c)*(c+a)) gives with the initial triangle (21,28,35): A' = 2*294*21*28*35/((21+28)*(28+35)*(35+21)) = 70, with the area A = 294 obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(42*(42-21)*(42-28)*(42-35)) = 294, where s = 42 is the semiperimeter.
References
- C. Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.
Links
- Wolfram MathWorld, Incentral Triangles
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn=1000; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s(s-a)(s-b)(s-c); t= 2*Sqrt[area2]*a*b*c/((a+b)*(b+c)*(c+a)); If[0
Comments