cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A228097 Integer areas of excentral triangles of integer-sided triangles.

Original entry on oeis.org

30, 50, 75, 120, 195, 200, 260, 270, 300, 340, 450, 480, 510, 525, 585, 675, 700, 750, 765, 780, 800, 845, 1014, 1015, 1040, 1080, 1156, 1200, 1250, 1360, 1365, 1470, 1530, 1554, 1740, 1755, 1800, 1845, 1875, 1920, 2040, 2100, 2210, 2220, 2275, 2340, 2430
Offset: 1

Views

Author

Michel Lagneau, Oct 26 2013

Keywords

Comments

The excentral triangle, also called the tritangent triangle, of a triangle ABC is the triangle IJK with vertices corresponding to the excenters of ABC.
The excentral triangle has side lengths:
a' = a*csc(A/2) where csc(z)=1/sin(z);
b' = b*csc(B/2);
c' = c*csc(C/2);
and area:
A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)).
Property of this sequence:
The areas of the original triangles are integers. The primitive triangles with areas a(n) are 30, 50, 75, 195, ...
The non-primitive triangles with areas 4*a(n) are in the sequence.
The following table gives the first values (A', A, a, b, c) where A' is the area of the excentral triangles, A is the area of the reference triangles ABC, a, b, c the integer sides of the original triangles ABC.
----------------------
| A'| A | a| b| c|
----------------------
| 30| 6| 3| 4| 5|
| 50| 12| 5| 5| 6|
| 75| 12| 5| 5| 8|
|120| 24| 6| 8| 10|
|195| 30| 5| 12| 13|
|200| 48| 10| 10| 12|
|260| 24| 4| 13| 15|
|270| 54| 9| 12| 15|
|300| 48| 10| 10| 16|
|340| 60| 8| 15| 17|
......................

Examples

			30 is in the sequence because the area A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)) of the excentral triangle corresponding to the initial triangle (3,4,5) is A' = 4*6*3*4*5/((3+4-5)*(3-4+5)*(-3+4+5)) = 30, where A = 6 obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(6*(6-3)*(6-4)*(6-5)) = 6, and where s = 6 is the semiperimeter.
The sides of the excentral triangle are:
  a' = 3*csc(1/2*arcsin(3/5)) = 9.48683298...
  b' = 4*csc(1/2*arcsin(4/5)) = 8.94427191...
  c' = 5*sqrt(2) = 7.07106781...
		

References

  • Clark Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.

Crossrefs

Programs

  • Mathematica
    nn = 500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))], AppendTo[lst, 4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Showing 1-1 of 1 results.