A228097 Integer areas of excentral triangles of integer-sided triangles.
30, 50, 75, 120, 195, 200, 260, 270, 300, 340, 450, 480, 510, 525, 585, 675, 700, 750, 765, 780, 800, 845, 1014, 1015, 1040, 1080, 1156, 1200, 1250, 1360, 1365, 1470, 1530, 1554, 1740, 1755, 1800, 1845, 1875, 1920, 2040, 2100, 2210, 2220, 2275, 2340, 2430
Offset: 1
Keywords
Examples
30 is in the sequence because the area A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)) of the excentral triangle corresponding to the initial triangle (3,4,5) is A' = 4*6*3*4*5/((3+4-5)*(3-4+5)*(-3+4+5)) = 30, where A = 6 obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(6*(6-3)*(6-4)*(6-5)) = 6, and where s = 6 is the semiperimeter. The sides of the excentral triangle are: a' = 3*csc(1/2*arcsin(3/5)) = 9.48683298... b' = 4*csc(1/2*arcsin(4/5)) = 8.94427191... c' = 5*sqrt(2) = 7.07106781...
References
- Clark Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.
Links
- Eric Weisstein's World of Mathematics, Excentral Triangles
Programs
-
Mathematica
nn = 500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))], AppendTo[lst, 4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments