A227888 Smallest odd k such that k*2^n-1, k*2^n-1+2*j, k*2^n-1+4*j or k*2^n-1-2*j, k*2^n-1, k*2^n-1+2*j are consecutive primes in arithmetic progression for some j.
3, 1, 19, 3, 19, 273, 93, 113, 87, 35, 31, 143, 31, 15, 315, 779, 207, 347, 91, 327, 291, 351, 195, 39, 1911, 971, 1083, 435, 1345, 593, 183, 1295, 291, 2553, 735, 1113, 31, 131, 61, 209, 379, 567, 2331, 1907, 4429, 23, 453, 1517, 2281, 2187, 1441, 4847, 1975
Offset: 1
Keywords
Examples
3*2^1-1-2=3 3*2^1-1=5 3*2^1-1+2=7 so a(1)=3. 3*2^4-1=47 3*2^4-1+6=53 3*2^4-1+12=59 so a(4)=3.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..325
Crossrefs
Cf. A052187.