cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227902 Numbers n such that triangular(n) divides binomial(2n,n).

Original entry on oeis.org

1, 2, 4, 6, 15, 20, 24, 28, 40, 42, 45, 66, 72, 77, 88, 91, 104, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 240, 266, 276, 299, 304, 308, 312, 315, 322, 325, 330, 345, 368, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 464, 468, 476, 480
Offset: 1

Views

Author

Alex Ratushnyak, Oct 14 2013

Keywords

Comments

A014847 is a subsequence.

Examples

			triangular(6)=21, A000984(6)=924. Because 21 divides 924, 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[480], Mod[Binomial[2 #, #], # (# + 1)/2] == 0 &] (* T. D. Noe, Oct 16 2013 *)
  • PARI
    is(n) = { my(f = factor(binomial(n+1, 2))); for(i = 1, #f~, if(val(2*n, f[i, 1]) - 2*val(n, f[i, 1]) < f[i, 2], return(0) ) ); 1 }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
  • Python
    from sympy import binomial
    for n in range(1, 444):
        CBC = binomial(2 * n, n)
        if not CBC % binomial(n + 1, 2):
           print(n, end=",")