A230252 Number of ways to write n = x + y (x, y > 0) with 2*x + 1, x^2 + x + 1 and y^2 + y + 1 all prime.
0, 1, 2, 3, 2, 3, 4, 4, 4, 3, 4, 1, 3, 3, 3, 5, 5, 4, 3, 6, 4, 7, 7, 2, 4, 6, 4, 4, 6, 3, 1, 4, 2, 4, 7, 4, 1, 4, 4, 2, 6, 4, 3, 4, 2, 3, 5, 3, 2, 1, 2, 3, 6, 2, 6, 6, 3, 5, 4, 5, 3, 7, 2, 4, 6, 2, 4, 5, 3, 5, 8, 5, 2, 10, 4, 4, 8, 5, 6, 7, 8, 4, 11, 4, 3, 6, 4, 2, 4, 8, 8, 11, 5, 3, 11, 5, 3, 6, 4, 5
Offset: 1
Keywords
Examples
a(5) = 2 since 5 = 2 + 3 = 3 + 2, and 2*2+1 = 5, 2*3+1 = 7, 2^2+2+1 = 7, 3^2+3+1 = 13 are all prime. a(31) = 1 since 31 = 14 + 17, and 2*14+1 = 29, 14^2+14+1 = 211 and 17^2+17+1 = 307 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2i+1]&&PrimeQ[i^2+i+1]&&PrimeQ[(n-i)^2+n-i+1],1,0],{i,1,n-1}] Table[a[n],{n,1,100}]
Comments