cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242428 Length of longest chain of nonempty proper subsemigroups of the dual symmetric inverse monoid.

Original entry on oeis.org

0, 2, 17, 180, 3298, 88431, 3064050, 130905678, 6732227475, 409094032964, 28917250469178, 2346562701385648, 216180120430479731, 22397392442055209003, 2588479398843886168171, 331352273262513644199134, 46692196905193286953380160, 7203294536351261350956567853, 1210694223244114528129261255186
Offset: 1

Views

Author

James Mitchell, May 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[StirlingS2[n, i] (i! (StirlingS2[n, i] - 1)/2 - DigitCount[i, 2, 1] + Ceiling[3 i/2] + 1), {i, 1, n}] - n - 1;
    Array[a, 19] (* Jean-François Alcover, Dec 12 2018, from PARI *)
  • PARI
    b(n)=if(n<1, 0, b(n\2)+n%2) /* A000120 */
    a(n)=-n-1+sum(i=1, n, stirling(n,i,flag=2)*(ceil(3*i/2)-b(i)+1+(stirling(n,i,flag=2)-1)*i!/2))

A242429 Length of longest chain of nonempty proper subsemigroups of the monoid of partial injective order-preserving functions of a chain with n elements.

Original entry on oeis.org

1, 5, 17, 53, 167, 550, 1899, 6809, 25067, 93902, 355775, 1358208, 5212573, 20082860, 77607895, 300638481, 1166999699, 4537960846, 17673418311, 68924837252, 269132082925, 1052055773292, 4116727946687, 16123827007348, 63205353550497, 247959367137320, 973469914150619, 3824345703033374, 15033634055076857
Offset: 1

Views

Author

James Mitchell, May 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[2n, n]/2 + 3*2^(n-1) - n - 2; Array[a, 30] (* Jean-François Alcover, Dec 15 2018, from PARI *)
  • PARI
    a(n)=-2-n+sum(i=0, n, binomial(n,i)*(binomial(n,i)+3)/2);

Formula

Conjecture: n*(131*n-376)*a(n) +2*(-563*n^2+1993*n-1185)*a(n-1) +3*(1099*n^2-4678*n+4684)*a(n-2) +2*(-1987*n^2+9803*n-12021)*a(n-3) +4*(209*n-387)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Oct 20 2015
a(n) = binomial(2*n,n)/2 + 3*2^(n-1) - n - 2. - Gheorghe Coserea, May 16 2016

A242432 Length of longest chain of nonempty proper subsemigroups of the monoid of partial injective orientation-preserving functions of a chain with n elements.

Original entry on oeis.org

1, 6, 24, 92, 363, 1483, 6191, 26077, 109987, 462900, 1941613, 8115138, 33805905, 140413073, 581694265, 2404314784, 9917782935, 40837958578, 167889571658, 689231516287, 2825851058202, 11572537702747, 47342211484912, 193485587828057, 790066214186999, 3223470297388819, 13141840760544209, 53540833421980514
Offset: 1

Views

Author

James Mitchell, May 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := If[n < 1, 0, PrimeOmega[n]];
    a[n_] := -2 - n + Sum[Binomial[n, i]*(b[i] + (Binomial[n, i] - 1)*i/2 + 2), {i, 0, n}];
    Array[a, 28] (* Jean-François Alcover, Feb 19 2019, from PARI *)
  • PARI
    b(n)=if(n<1, 0, bigomega(n)) /* A001222 */
    a(n)=-2-n+sum(i=0, n, binomial(n,i)*(b(i)+(binomial(n,i)-1)*i/2+2))
Showing 1-3 of 3 results.