A227920 Number of ways to write n = x + y + z with y and z distinct and greater than x such that 6*x-1, 6*y-1, 6*x*y-1 are Sophie Germain primes and {6*x-1, 6*x+1}, {6*z-1, 6*z+1}, {6*x*z-1, 6*x*z+1} are twin prime pairs.
0, 0, 0, 0, 0, 1, 1, 3, 1, 3, 1, 2, 4, 1, 3, 1, 3, 4, 1, 4, 2, 5, 4, 1, 4, 4, 3, 5, 1, 3, 2, 3, 8, 2, 6, 4, 4, 7, 2, 6, 5, 3, 8, 2, 6, 6, 3, 10, 2, 8, 4, 4, 10, 2, 9, 4, 4, 6, 1, 7, 4, 4, 8, 5, 3, 6, 4, 7, 1, 3, 5, 2, 10, 3, 7, 5, 3, 11, 3, 9, 4, 5, 6, 1, 7, 5, 5, 9, 4, 6, 4, 6, 9, 2, 5, 4, 3, 5, 2, 6
Offset: 1
Keywords
Examples
a(14) = 1 since 14 = 2 + 7 + 5, and 6*2-1 = 11, 6*7-1 = 41, 6*2*7-1 = 83 are Sophie Germain primes, and {6*2-1, 6*2+1} ={11, 13}, {6*5-1, 6*5+1} = {29, 31}, {6*2*5-1, 6*2*5+1} = {59, 61} are twin prime pairs.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
Programs
-
Mathematica
SQ[n_]:=PrimeQ[6n-1]&&PrimeQ[12n-1] TQ[n_]:=PrimeQ[6n-1]&&PrimeQ[6n+1] RQ[n_]:=TQ[n]&&PrimeQ[12n-1] a[n_]:=Sum[If[RQ[i]&&SQ[j]&&SQ[i*j]&&TQ[n-i-j]&&TQ[i(n-i-j)]&&Abs[n-i-2j]>0,1,0],{i,1,n/3-1},{j,i+1,n-1-2i}] Table[a[n],{n,1,100}]
Comments