A227925 Triangle read by rows: number of espalier polycubes counted by height and volume.
1, 1, 2, 1, 2, 2, 1, 3, 4, 2, 1, 2, 5, 4, 2, 1, 4, 8, 7, 4, 2, 1, 2, 8, 10, 7, 4, 2, 1, 4, 13, 14, 12, 7, 4, 2, 1, 3, 12, 19, 16, 12, 7, 4, 2, 1, 4, 17, 26, 25, 18, 12, 7, 4, 2, 1, 2, 16, 29, 32, 27, 18, 12, 7, 4, 2, 1, 6, 24, 41, 45, 38, 29, 18, 12, 7, 4, 2, 1, 2, 19, 44, 55, 51, 40, 29, 18, 12, 7, 4, 2, 1
Offset: 0
Crossrefs
The numbers of espaliers counted by volume are given by A229915
Programs
-
Maple
calcRecEsp:=proc(i, j, k, l) option remember; ## Compute the number n_{i,j,k,l} if (l<0) then 0 elif (i*j*k>l) then 0 elif k=1 then if (i*j=l) then 1 else 0; fi; else s:=0; a:=0; b:=0; while ((i+a)*j*(k-1)<=l-i*j) do b:=0; while ((i+a)*(j+b)*(k-1)<=l-i*j) do s:=s+calcRecEsp(i+a, j+b, k-1, l-i*j); b:=b+1; od; a:=a+1; od; s; fi; end; compteEsp:=proc(l) ### compute \sum_{v}n_{h,v}t^v s:=0; for k to l do i:=1: while (i*k<=l) do j:=1; while (i*k*j<=l) do s:=s+t^k*calcRecEsp(i, j, k, l); j:=j+1; od: i:=i+1; od; od; s; end; [1,seq(op(convert(compteEsp(ii),list)), ii=2..200)];
Formula
The number n_{i,j,h,v} of espaliers of volume v, height h and such that the highest plateau has volume i * j is given by the recurrence:
n_{i,j,h,v} = \sum_{0 <= a <= (i*j*h-v)/((h-1)j)} \sum_{0 <= b <=
(j(h(i+a)-a)-v)/((i+a)(k-1))} n_{i+a,j+a,h-1,v-ij}
The number of espaliers of volume v and height h is given by
n_{h,v}=\sum_{i*j<=v}n_{i,j,h,v}
Comments