cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229915 Number of espalier polycubes of a given volume in dimension 3.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 26, 34, 57, 76, 116, 150, 227, 284, 408, 520, 718, 895, 1226, 1508, 2018, 2487, 3248, 3968, 5160, 6235, 7970, 9653, 12179, 14630, 18367, 21924, 27241, 32506, 39985, 47492, 58203, 68752, 83613, 98730, 119269, 140224, 168799, 197758, 236753, 277052, 329867, 384852, 457006, 531500, 628338
Offset: 0

Views

Author

Matthieu Deneufchâtel, Oct 03 2013

Keywords

Comments

A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell with coordinates (0,b,c) belongs to the first plateau such that b,c >= 0. If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau.
An espalier polycube is a special pyramid such that each plateau contains the cell with coordinates (a,0,0).

Crossrefs

Formula

The generating function for the numbers of espaliers of height h and volumes v_1 , ... v_h is x_1^{n_1} * ... x_h^{n_h} / ((1-x_1^{n_1}) *(1-x_1^{n_1}*x_2^{n_2}) *... *(1-x_1^{n_1}*x_2^{n_2}*...x_h^{n_h})).
This sequence is obtained with x_1 = ... = x_h = p by summing over n_1>= ... >= n_h>=1 and then over h.

Extensions

a(0)=1 prepended by Seiichi Manyama, Aug 20 2020

A229917 Numbers of espalier polycubes of a given volume in dimension 4.

Original entry on oeis.org

1, 4, 7, 16, 22, 46, 58, 107, 140, 227, 287, 464, 563, 851, 1067, 1530, 1866, 2661, 3198, 4428, 5361, 7185, 8613, 11524, 13639, 17839, 21272, 27359, 32300, 41369, 48512, 61311, 72105, 89904, 105226, 130834, 152164, 187297, 218356, 266444, 309125, 375995, 434670, 525045, 607329, 728256, 839874, 1004938
Offset: 1

Views

Author

Matthieu Deneufchâtel, Oct 03 2013

Keywords

Comments

A (d+1)-pyramid polycube is a (d+1)-polycube obtained by gluing together horizontal (d+1)-plateaux (parallelepipeds of height 1) in such a way that the cell (0,0,...,0) belongs to the first plateau and each cell with coordinates (0,n_1,...,n_d) belonging to the first plateau is such that n_1 , ... , n_d >= 0.
If the cell with coordinates (n_0,n_1,...,n_d) belongs to the (n_0+1)-st plateau (n_0>0), then the cell with coordinates (n_0-1, n_1, ... ,n_d) belongs to the n_0-th plateau.
A (d+1)-espalier is a (d+1)-pyramid such that each plateau contains the cell (n_0,0,...,0).

Crossrefs

A229925 Numbers of espalier polycubes of a given volume in dimension 5.

Original entry on oeis.org

1, 5, 9, 23, 31, 71, 87, 173, 223, 379, 471, 801, 951, 1495, 1851, 2736, 3282, 4832, 5708, 8126, 9704, 13290, 15694, 21496, 25038, 33396, 39330, 51452
Offset: 1

Views

Author

Matthieu Deneufchâtel, Oct 03 2013

Keywords

Comments

A (d+1)-pyramid polycube is a (d+1)-polycube obtained by gluing together horizontal (d+1)-plateaux (parallelepipeds of height 1) in such a way that the cell (0,0,...,0) belongs to the first plateau and each cell with coordinates (0,n_1,...,n_d) belonging to the first plateau is such that n_1 , ... , n_d >= 0.
If the cell with coordinates (n_0,n_1,...,n_d) belongs to the (n_0+1)-st plateau (n_0>0), then the cell with coordinates (n_0-1, n_1, ... ,n_d) belongs to the n_0-th plateau.
A (d+1)-espalier is a (d+1)-pyramid such that each plateau contains the cell (n_0,0,...,0).

Crossrefs

A230118 Numbers of quasi-espalier polycubes of a given volume (number of atomic cells).

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 29, 42, 61, 87, 122, 167, 229, 306, 409, 538, 705, 915, 1182, 1509, 1927, 2438, 3075, 3854, 4814, 5985, 7416, 9144, 11253, 13784, 16845, 20512, 24922, 30179, 36470, 43939, 52841, 63378, 75864, 90605, 108022, 128496, 152603, 180865, 214044, 252826, 298192, 351108, 412832, 484632, 568157
Offset: 1

Views

Author

Matthieu Deneufchâtel, Oct 10 2013

Keywords

Comments

A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell with coordinate (0,b,c) belonging to the first plateau is such that b , c >= 0. If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau.
An espalier polycube is a special pyramid such that each plateau contains the cell with coordinate (a,0,0).
Quasi espaliers are espaliers from which all the cells with coordinates (a,0,0) have been removed.
If E(x,h) denotes the generating function of espalier polycubes, x^(-h) E(x,h) converges when h tends to infinity towards a series which is the generating function of quasi-espalier polycubes.

Crossrefs

Programs

  • Maple
    calcRecEsp:=proc(i, j, k, l) option remember;
    ## Compute the number n_{i, j, k, l}
    if (l<0) then 0
    elif (i*j*k>l) then 0
    elif k=1 then
    if (i*j=l) then
    1
    else 0;
    fi;
    else
    s:=0; a:=0; b:=0;
    while ((i+a)*j*(k-1)<=l-i*j) do
    b:=0;
    while ((i+a)*(j+b)*(k-1)<=l-i*j) do
    s:=s+calcRecEsp(i+a, j+b, k-1, l-i*j);
    b:=b+1;
    od;
    a:=a+1;
    od;
    s;
    fi;
    end;
    compteEsp:=proc(l) ### compute \sum_{v}n_{h, v}t^v
    s:=0;
    for k to l do
    i:=1:
    while (i*k<=l) do
    j:=1;
    while (i*k*j<=l) do
    s:=s+t^k*calcRecEsp(i, j, k, l);
    j:=j+1;
    od:
    i:=i+1;
    od;
    od;
    s;
    end;
    enum = [seq(op(convert(compteEsp(ii), list)), ii=2..200)];
    serie_quasi_Esp:=proc(l)global enum;local ii;
    map(coeff,enum,t^l);
    select(x->x>0,%);
    sum(t^(ii-1)*%[ii],ii=1..nops(%));
    end;
    serie_quasi_Esp(100):
    [1, seq(coeff(%, t^ii)-1, ii=1..50)];
Showing 1-4 of 4 results.