A227938 List of those numbers which can be written as x + y + z (x, y, z > 0) such that all the six numbers 6*x-1, 6*y-1, 6*z-1, 6*x*y-1, 6*x*z-1 and 6*y*z-1 are Sophie Germain primes.
3, 4, 5, 6, 7, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 24, 25, 28, 31, 32, 33, 34, 35, 41, 42, 44, 45, 46, 47, 49, 51, 53, 55, 58, 61, 62, 63, 64, 65, 66, 72, 74, 75, 76, 77, 78, 79, 80, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 101, 102
Offset: 1
Keywords
Examples
a(1) = 3 since 3 = 1 + 1 + 1, and 6*1-1=5 is a Sophie Germain prime. a(7) = 10 since 10 = 1 + 2 + 7, and 6*1-1=5, 6*2-1=11, 6*7-1=41, 6*1*2-1=11, 6*1*7-1=41, 6*2*7-1=83 are Sophie Germain primes.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
m=0 SQ[n_]:=SQ[n]=PrimeQ[n]&&PrimeQ[2n+1] Do[Do[If[SQ[6i-1]&&SQ[6j-1]&&SQ[6(n-i-j)-1]&&SQ[6i*j-1]&&SQ[6*i(n-i-j)-1]&&SQ[6*j(n-i-j)-1], m=m+1;Print[m," ",n];Goto[aa]],{i,1,n/3},{j,i,(n-i)/2}]; Label[aa];Continue,{n,1,102}] sgpQ[{x_,y_,z_}]:=AllTrue[{6x-1,6y-1,6z-1,6x y-1,6x z-1,6y z-1,2(6x-1)+1,2(6y-1)+1,2(6z-1)+ 1,2(6x y-1)+1,2(6x z-1)+1,2(6y z-1)+1},PrimeQ]; Select[Total/@Select[Tuples[Range[100],3],sgpQ]//Union,#<110&] (* Harvey P. Dale, Jul 23 2024 *)
Comments