cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227975 Numbers m such that m divides Sum_{k=1..m} lambda(k).

Original entry on oeis.org

1, 2, 5, 6, 10, 18, 30, 82, 4866, 8784, 10170, 23364, 76296, 247166, 585570, 735480, 848754, 1559520, 2884840, 11272940, 35642420, 56652788, 174935486, 196398413, 679063441, 1398826844, 1542228164, 1665703953, 2699813692, 5734751503
Offset: 1

Views

Author

Michel Lagneau, Jun 17 2016

Keywords

Comments

lambda(n) is the Carmichael lambda function (A002322). The corresponding ratios (Sum_{k=1..m} lambda(k))/m are given by the sequence {1, 1, 2, 2, 3, 5, 8, 19, 711, 1221, 1399, 3011, 9034, 27187, 61246, 75971, 86971, 154710, 277344, 1015576,...}.
a(31) > 10^10. - Dana Jacobsen, Jul 07 2016

Examples

			5 is in the sequence because 5 divides Sum_{k=1..5} lambda(k) = 1 + 1 + 2 + 2 + 4 = 2*5.
		

Crossrefs

Programs

  • Mathematica
    s = 0; Do[s = s + CarmichaelLambda[n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10^9}]
  • Perl
    use ntheory ":all"; my $v=0; for my $m (1..1e6) { $v=vecsum($v,carmichael_lambda($m)); say $m unless $v % $m; } # Dana Jacobsen, Jul 07 2016

Extensions

More terms from Dana Jacobsen, Jul 07 2016