cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046094 Agoh's congruence; a(n) is conjectured to be 1 iff n is prime.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 1, 0, 1, 0, 7, 0, 1, 0, 5, 0, 9, 0, 1, 0, 1, 0, 11, 0, 0, 0, 1, 0, 13, 0, 1, 0, 1, 0, 24, 0, 1, 0, 7, 0, 17, 0, 1, 0, 0, 0, 19, 0, 1, 0, 1, 0, 21, 0, 13, 0, 1, 0, 23, 0, 1, 0, 1, 0, 25, 0, 0, 0, 1, 0, 27, 0, 1, 0, 17, 0, 29, 0, 1, 0, 13, 0, 31, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Keywords

Examples

			- 21 * Bernoulli(20) = 21 * 174611 / 330 = 1222277 / 110  and 1 / 110 == 17 mod 21, so a(21) = 1222277 * 17 mod 21 = 7. - _Jonathan Sondow_, Aug 13 2013
		

Crossrefs

Cf. A228037.

Programs

  • Mathematica
    a[ n_ ] := Mod[ Numerator[ -n* BernoulliB[ n-1 ]]*PowerMod[ Denominator[ n*BernoulliB[ n-1 ] ], -1, n ], n ] (* Jonathan Sondow, Aug 13 2013 *)
  • PARI
    a(n) = -n*bernfrac(n-1) % n; \\ Michel Marcus, Aug 08 2017

Formula

a(n) = - n*Bernoulli(n-1) mod n.

Extensions

a(21), a(51), a(57), a(65), a(81) corrected by Jonathan Sondow, Aug 13 2013

A235140 Numerator(m*Bernoulli(m-1)+1) (mod m), for m = 1, 3, 5, 7, 9, ...

Original entry on oeis.org

0, 0, 0, 0, 7, 0, 0, 7, 0, 0, 12, 0, 16, 11, 0, 0, 16, 6, 0, 15, 0, 0, 22, 0, 8, 5, 0, 28, 24, 0, 0, 23, 11, 0, 56, 0, 0, 27, 30, 0, 71, 0, 63, 31, 0, 69, 36, 6, 0, 35, 0, 0, 50, 0, 0, 99, 0, 42, 44, 6, 72, 43, 106, 0, 84, 0, 1, 47, 0, 0, 91, 6, 36, 51, 0, 0, 112, 138, 0, 55, 102, 0, 78, 0, 115, 136, 0, 79, 67, 0, 0, 63, 23, 42, 136, 0, 0, 67, 0, 0, 111
Offset: 0

Views

Author

Jonathan Sondow, Jan 07 2014

Keywords

Crossrefs

Programs

  • Maple
    seq(numer(m*bernoulli(m-1)+1) mod m, m = 1 .. 300, 2); # Robert Israel, Nov 07 2024
  • Mathematica
    Table[ Mod[ Numerator[ n*BernoulliB[n - 1] + 1], n], {n, 1, 201, 2}]

Formula

a(n) = numerator((2*n+1)*Bernoulli(2*n)+1) (mod 2*n+1).
The Agoh-Giuga Conjecture is that a(n)=0 iff 2*n+1 is 1 or a prime.
a(n) = 0 iff A235363(n) = 0.
Conjecture: a(n) = (2*n + 7)/3 if n > 1 is in A004611. - Robert Israel, Nov 07 2024

A235363 (1 + Sum_{k=1..m-1} k^(m-1)) (mod m), for m = 1, 3, 5, 7, 9, ...

Original entry on oeis.org

0, 0, 0, 0, 7, 0, 0, 11, 0, 0, 15, 0, 21, 19, 0, 0, 23, 1, 0, 27, 0, 0, 22, 0, 43, 35, 0, 1, 39, 0, 0, 43, 53, 0, 47, 0, 0, 51, 1, 0, 55, 0, 69, 59, 0, 79, 63, 1, 0, 67, 0, 0, 50, 0, 0, 75, 0, 1, 79, 1, 111, 83, 101, 0, 87, 0, 115, 91, 0, 0, 95, 1, 117, 99, 0, 0, 103, 1, 0, 107, 1, 0, 78, 0, 157, 115, 0, 151, 119, 0, 0, 123, 149, 1, 127, 0, 0, 131, 0, 0, 135
Offset: 0

Views

Author

Jonathan Sondow, Jan 07 2014

Keywords

Comments

a(n) = (1 + Sum_{k=1..2*n} k^(2*n)) (mod 2*n+1), for n = 0, 1, 2, 3, ...
The Agoh-Giuga Conjecture is that a(n)=0 iff 2*n+1 is 1 or a prime.

Crossrefs

Programs

  • Mathematica
    Table[ Mod[ Sum[ PowerMod[ k, n - 1, n], {k, n - 1}] + 1, n], {n, 1, 201, 2}]

Formula

a(n) = 0 iff A235364(n) = 0.
Showing 1-3 of 3 results.