cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228078 a(n) = 2^n - Fibonacci(n) - 1.

Original entry on oeis.org

0, 0, 2, 5, 12, 26, 55, 114, 234, 477, 968, 1958, 3951, 7958, 16006, 32157, 64548, 129474, 259559, 520106, 1041810, 2086205, 4176592, 8359950, 16730847, 33479406, 66987470, 134021309, 268117644, 536356682, 1072909783, 2146137378, 4292788986, 8586410013
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2013

Keywords

Comments

a(n+1) = sum of n-th row of the triangle in A228074.

Programs

  • Haskell
    a228078 = subtract 1 . a099036
    
  • Magma
    [2^n - Fibonacci(n) - 1: n in [0..40]]; // Vincenzo Librandi, Aug 16 2013
    
  • Mathematica
    Table[(2^n - Fibonacci[n] - 1), {n, 0, 40}] (* Vincenzo Librandi, Aug 16 2013 *)
  • PARI
    concat([0,0], Vec(x^2*(3*x-2)/((x-1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 20 2015

Formula

a(n) = A000079(n) - A000045(n) - 1 = A000225(n) - A000045(n) = A000079(n) - A001611(n) = A099036(n) - 1.
From Colin Barker, Mar 20 2015: (Start)
a(n) = 4*a(n-1)-4*a(n-2)-a(n-3)+2*a(n-4) for n>3.
G.f.: x^2*(3*x-2) / ((x-1)*(2*x-1)*(x^2+x-1)). (End)
a(n) = (-1+2^n+(((1-sqrt(5))/2)^n-((1+sqrt(5))/2)^n)/sqrt(5)). - Colin Barker, Nov 02 2016