cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228081 a(n) = 64^n + 1.

Original entry on oeis.org

2, 65, 4097, 262145, 16777217, 1073741825, 68719476737, 4398046511105, 281474976710657, 18014398509481985, 1152921504606846977, 73786976294838206465, 4722366482869645213697, 302231454903657293676545, 19342813113834066795298817, 1237940039285380274899124225
Offset: 0

Views

Author

Arkadiusz Wesolowski, Aug 09 2013

Keywords

Comments

These numbers can be written as the sum of two relatively prime squares and also as the sum of two relatively prime cubes (i.e., 2^(6*n) + 1 = (2^(3*n))^2 + 1^2 = (2^(2*n))^3 + 1^3).

Examples

			a(2) = 64^2 + 1 = 4097.
		

Crossrefs

Cf. A000051 (2^n + 1), A052539 (4^n + 1), A062395 (8^n + 1).

Programs

  • Magma
    [64^n+1 : n in [0..15]];
    
  • Mathematica
    Table[64^n + 1, {n, 0, 15}]
    LinearRecurrence[{65,-64},{2,65},20] (* Harvey P. Dale, Jul 17 2020 *)
  • PARI
    for(n=0, 15, print1(64^n+1, ", "))

Formula

a(n) = 64*a(n-1) - 63.
a(n) = A089357(n) + 1 = 2^A008588(n) + 1.
G.f.: (2 - 65*x)/((1 - x)*(1 - 64*x)).
E.g.f.: e^x + e^(64*x).