A228094 Triangle starting at row 3 read by rows of the number of permutations in the n-th Dihedral group which are the product of k disjoint cycles, d(n,k), n >= 3, 1 <= k <= n.
2, 3, 1, 2, 3, 2, 1, 4, 0, 5, 0, 1, 2, 2, 4, 3, 0, 1, 6, 0, 0, 7, 0, 0, 1, 4, 2, 0, 5, 4, 0, 0, 1, 6, 0, 2, 0, 9, 0, 0, 0, 1, 4, 4, 0, 0, 6, 5, 0, 0, 0, 1, 10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1
Offset: 3
Examples
Triangle begins 2, 3, 1; 2, 3, 2, 1; 4, 0, 5, 0, 1; 2, 2, 4, 3, 0, 1; 6, 0, 0, 7, 0, 0, 1; 4, 2, 0, 5, 4, 0, 0, 1; 6, 0, 2, 0, 9, 0, 0, 0, 1; 4, 4, 0, 0, 6, 5, 0, 0, 0, 1; 10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1; 4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1; ...
References
- Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 8.4.12 at pp. 246-247.
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, 1973, p. 37.
Links
- Stefano Spezia, First 150 rows of the triangle, flattened
- Eric Weisstein's World of Mathematics, Cycle Index.
Programs
-
Mathematica
d[n_,k_]:=If[Divisible[n,k],EulerPhi[n/k],0]+If[OddQ[n]&&k==(n+1)/2,n,If[EvenQ[n]&&(k==n/2||k==(n+2)/2),n/2,0]]; Table[d[n,k],{n,3,12},{k,n}]//Flatten (* Stefano Spezia, Jun 26 2023 *)
Formula
d(n,k) = A054523(n,k) + d'(n,k), where: If n is odd, then d'(n,k)= n when k=(n+1)/2 and d'(n,k)=0 otherwise. If n is even, then d'(n,k)=n/2 when k=n/2, (n+2)/2 and d'(n,k)=0 otherwise.
Extensions
Terms corrected by Stefano Spezia, Jun 30 2023
Comments