cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228094 Triangle starting at row 3 read by rows of the number of permutations in the n-th Dihedral group which are the product of k disjoint cycles, d(n,k), n >= 3, 1 <= k <= n.

Original entry on oeis.org

2, 3, 1, 2, 3, 2, 1, 4, 0, 5, 0, 1, 2, 2, 4, 3, 0, 1, 6, 0, 0, 7, 0, 0, 1, 4, 2, 0, 5, 4, 0, 0, 1, 6, 0, 2, 0, 9, 0, 0, 0, 1, 4, 4, 0, 0, 6, 5, 0, 0, 0, 1, 10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Robert A. Beeler, Aug 09 2013

Keywords

Comments

The multivariable row polynomials give n times the cycle index for the Dihedral group D_n, called Z(D_n) (see the MathWorld link with the Harary reference). For example, 12*Z(D_6) = 2*(y_6)^1 + 2*(y_3)^2 + 4*(y_2)^3+3*(y_1)^2*(y_2)^2 + 1*(y_1)^6.

Examples

			Triangle begins
   2, 3, 1;
   2, 3, 2, 1;
   4, 0, 5, 0, 1;
   2, 2, 4, 3, 0,  1;
   6, 0, 0, 7, 0,  0, 1;
   4, 2, 0, 5, 4,  0, 0, 1;
   6, 0, 2, 0, 9,  0, 0, 0, 1;
   4, 4, 0, 0, 6,  5, 0, 0, 0, 1;
  10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1;
   4, 2, 2, 2, 0,  7, 6, 0, 0, 0, 0, 1;
   ...
		

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 8.4.12 at pp. 246-247.
  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, 1973, p. 37.

Crossrefs

Programs

  • Mathematica
    d[n_,k_]:=If[Divisible[n,k],EulerPhi[n/k],0]+If[OddQ[n]&&k==(n+1)/2,n,If[EvenQ[n]&&(k==n/2||k==(n+2)/2),n/2,0]]; Table[d[n,k],{n,3,12},{k,n}]//Flatten (* Stefano Spezia, Jun 26 2023 *)

Formula

d(n,k) = A054523(n,k) + d'(n,k), where: If n is odd, then d'(n,k)= n when k=(n+1)/2 and d'(n,k)=0 otherwise. If n is even, then d'(n,k)=n/2 when k=n/2, (n+2)/2 and d'(n,k)=0 otherwise.

Extensions

Terms corrected by Stefano Spezia, Jun 30 2023