A228095 Determinant of the p_n X p_n matrix with (i,j)-entry equal to the Legendre symbol ((i^2 + 3*i*j + 3*j^2)/p_n) for all i,j = 0, 1, ..., p_n-1, where p_n is the n-th prime.
0, 0, -72, 0, 9600, 0, 23970816, 0, 0, -8814759178752000000, -1217765613534782800527360, 0, 2555625991208076641833058304, 0, 0, 0, 164525463228624478317575381527120287356682240, -33094833021317386202938131485140597289779200, 0
Offset: 2
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..50
- Zhi-Wei Sun, On some determinants with Legendre symbol entries, preprint, arXiv:1308.2900 [math.NT], 2013-2019.
Programs
-
Mathematica
a[n_]:=Det[Table[JacobiSymbol[i^2+3*i*j+3*j^2,Prime[n]],{i,0,(Prime[n]-1)},{j,0,(Prime[n]-1)}]] Table[a[n],{n,2,20}]
-
PARI
a(n) = my(p=prime(n)); matdet(matrix(p, p, i, j, i--; j--; kronecker(i^2+3*i*j+3*j^2, p))); \\ Michel Marcus, Aug 25 2021
Comments