A228098 Number of primes p > prime(n) and such that prime(n)*p < prime(n+1)^2.
1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4, 1, 2, 1, 3, 1, 2, 2, 1, 2, 2, 1, 4, 1, 2, 1, 2, 4, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 1, 1, 4, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 3
Offset: 1
Examples
a(4)=3 because prime(4)=7, prime(5)=11, 11^2=121, and 7*11 < 7*13 < 7*17 < 121 < 7*19.
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 1..9999
- C. K. Caldwell, Gaps between primes.
- Eric W. Weisstein, Andrica's Conjecture
- Wikipedia, Andrica's conjecture
- Marek Wolf, A note on the Andrica conjecture, arXiv:1010.3945 [math.NT], 2010.
Programs
-
Mathematica
Table[PrimePi[Prime[n + 1]^2/Prime[n]] - n, {n, 100}] (* T. D. Noe, Oct 29 2013 *)
-
Sage
P = Primes() def a(n): p=P.unrank(n-1) p1=P.unrank(n) L=[q for q in [p+1..p1^2] if q in Primes() and p*q
Tom Edgar, Oct 29 2013
Comments