cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228098 Number of primes p > prime(n) and such that prime(n)*p < prime(n+1)^2.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4, 1, 2, 1, 3, 1, 2, 2, 1, 2, 2, 1, 4, 1, 2, 1, 2, 4, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 1, 1, 4, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Keywords

Comments

For n > 1, a(n)+1 is the number of composite numbers < prime(n+1)^2 and removed at the n-th step of Eratosthenes's sieve. The exception for n=1 comes from prime(1)^3 = 2^3 = 8 < prime(2)^2 = 9. This does not occur any more because prime(n)^3 > prime(n+1)^2 for all n > 1.
a(n) is related to the distribution of primes around prime(n+1). High values correspond to a large gap before prime(n+1) followed by several small gaps after prime(n+1).
a(n) >= 1 for all n, because prime(n+1) always trivially satisfies the condition. The sequence tends to alternate high and low values, and takes its minimum value 1 about half the time.
a(n) is >= and almost always equal to a'(n), defined as the number of primes between prime(n+1) (inclusive) and prime(n+1) + gap(n) (inclusive), with gap(n) = prime(n+1) - prime(n) = A001223(n).
An exception is 7, for which a(7) = 3, while the following prime is 11, thus gap(7) = 4, and there are only two primes between 11 and 11 + 4 = 15. It is probably the only one, as it is easily seen that a(n) = a'(n) if gap(n) <= sqrt(2*prime(n)), which is a condition a little stronger than Andrica's Conjecture: gap(n) < 2*sqrt(prime(n))+1. 7 is probably a record for the ratio gap(n)/sqrt(prime(n)), and the only prime for which it is > sqrt(2) (see A079296 for an ordering of primes according to Andrica's conjecture).

Examples

			a(4)=3 because prime(4)=7, prime(5)=11, 11^2=121, and 7*11 < 7*13 < 7*17 < 121 < 7*19.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[Prime[n + 1]^2/Prime[n]] - n, {n, 100}] (* T. D. Noe, Oct 29 2013 *)
  • Sage
    P = Primes()
    def a(n):
        p=P.unrank(n-1)
        p1=P.unrank(n)
        L=[q for q in [p+1..p1^2] if q in Primes() and p*qTom Edgar, Oct 29 2013