A228117 Number of partitions of n that have hookset {1,2,...,k} for some k.
1, 1, 2, 2, 3, 4, 4, 6, 7, 9, 10, 16, 14, 23, 24, 33, 33, 50, 50, 71, 75, 101, 103, 146, 151, 201, 211, 280, 292, 389, 409, 519, 573, 707, 765, 960, 1043, 1276, 1393, 1704, 1870, 2258, 2483, 2970, 3281, 3920, 4290, 5101, 5659, 6640, 7318, 8628, 9506, 11081
Offset: 0
Keywords
Examples
a(7) = 6, counting the partitions (7), (43), (331), (322), (2221), and (111111). The hooklengths of (7) are {1,2,3,4,5,6,7}, and the hooklengths of (322) are {1,1,2,2,3,4,5}.
Crossrefs
Cf. A158291, the number of partitions which have hookset {1,2,...,n}, not counting multiplicities.
Programs
-
Maple
h:= proc(l) local n, s; n:=nops(l); s:= {seq(seq(1+l[i]-j +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)}; `if`(s={$1..max(s[], 0)}, 1, 0) end: g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0, g(n, i-1, l)+`if`(i>n, 0, g(n-i, i, [l[], i])))): a:= n-> g(n$2, []): seq(a(n), n=0..30); # Alois P. Heinz, Aug 12 2013
-
Mathematica
<< "Combinatorica`" HookSet[Lambda_] := Module[{i, j, k, HookHolder}, HookHolder = {}; HS = {}; For[i = 1, i < Length[Lambda] + 1, i++, For[j = 1, j < Lambda[[i]] + 1, j++, CurrentHook = Lambda[[i]] - j + TransposePartition[Lambda][[j]] - i + 1; If[! MemberQ[HS, CurrentHook], HookHolder = Append[HS, CurrentHook]; HS = HookHolder] ] ]; HookHolder = Sort[HS]; HS = HookHolder; Return[HS]] For[i = 1, i < 31, i++, For[j = 1, j < PartitionsP[i] + 1, j++, CurrSet=HookSet[Partitions[i][[j]]]; If[CurrSet == Table[i,{i,1,Length[CurrSet]}], SGFHolder = SegGenFn + q^i; SegGenFn = SGFHolder] ] ] (* second program: *) h[l_] := Module[{n, s}, n = Length[l]; s = Table[Table[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] // Flatten // Union; If[s == Range[Max[Append[s, 0]]], 1, 0]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i<1, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i, Append[l, i]]]]]; a[n_] := g[n, n, {}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)
Extensions
a(31)-a(53) from Alois P. Heinz, Aug 12 2013
Comments