cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228132 First differences of A014311.

Original entry on oeis.org

4, 2, 1, 5, 2, 1, 3, 1, 2, 7, 2, 1, 3, 1, 2, 5, 1, 2, 4, 11, 2, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 4, 8, 19, 2, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 4, 8, 17, 1, 2, 4, 8, 16, 35, 2, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 4, 8, 17, 1, 2, 4, 8, 16, 33, 1, 2, 4, 8, 16, 32
Offset: 1

Views

Author

Jon Perry, Nov 02 2013

Keywords

Comments

The records are: 4, 5, 7, 11, 19, 35, 67, ... and they occur at these indices of A014311: 11, 19, 35, 67, ... (for both, see A062709). - Michel Marcus, Jun 11 2015
The record (maximum) among the first 1000 terms is 65539. - Harvey P. Dale, May 29 2018

Crossrefs

Cf. A062709 (2^n+3), A014311 (numbers with exactly 3 ones in binary expansion).
Cf. A145057.

Programs

  • JavaScript
    oo=0;
    for (i=1;i<500;i++) {
    s=i.toString(2);
    o=0;
    for (j=0;j
    				
  • Mathematica
    Differences[Select[Range[500],DigitCount[#,2,1]==3&]] (* Harvey P. Dale, May 29 2018 *)
  • PARI
    lista(nn) = {my(last = 0); for (n=1, nn, if (hammingweight(n)==3, if (last, print1(n-last,", ")); last = n;););} \\ Michel Marcus, Jun 10 2015
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A228132(n): return (1<<(r:=n-comb((m:=integer_nthroot(6*n+6,3)[0])+(t:=(n>=comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n+1-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+(1<comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))-(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))-(1<Chai Wah Wu, Apr 07 2025