cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228137 Numbers that are congruent to {1, 4} mod 12.

Original entry on oeis.org

1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 61, 64, 73, 76, 85, 88, 97, 100, 109, 112, 121, 124, 133, 136, 145, 148, 157, 160, 169, 172, 181, 184, 193, 196, 205, 208, 217, 220, 229, 232, 241, 244, 253, 256, 265, 268, 277, 280, 289, 292, 301, 304, 313, 316, 325
Offset: 1

Views

Author

Colin Barker, Aug 12 2013

Keywords

Comments

The squares of the terms of A001651 are the squares of this sequence. - Bruno Berselli, Aug 12 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[300], MemberQ[{1, 4}, Mod[#, 12]] &] (* Amiram Eldar, Dec 28 2021 *)
  • PARI
    Vec(x*(8*x^2+3*x+1)/((x-1)^2*(x+1)) + O(x^99))

Formula

a(n) = -13/2 - 3*(-1)^n/2 + 6*n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(8*x^2+3*x+1) / ((x-1)^2*(x+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3)+3)*Pi/36 + log(2)/4 - sqrt(3)*log(26-15*sqrt(3))/36. - Amiram Eldar, Dec 28 2021
E.g.f.: 8 + ((12*x - 13)*exp(x) - 3*exp(-x))/2. - David Lovler, Sep 04 2022