A228139 Primes such that the product of their digits subtracted from the prime number is another prime.
23, 29, 41, 43, 47, 83, 89, 127, 149, 181, 223, 227, 229, 241, 251, 263, 271, 277, 293, 347, 349, 367, 383, 389, 419, 431, 433, 439, 457, 479, 487, 541, 587, 631, 641, 643, 647, 653, 659, 673, 677, 743, 761, 853, 857, 859, 863, 883, 887, 1123, 1229, 1279, 1297, 1423, 1459, 1489, 1523
Offset: 1
Examples
23 is a member since 23-(2*3)=17. 29 is a member since 29-(2*9)=11.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Crossrefs
Subsequence of A038618.
Programs
-
Mathematica
pdsQ[n_]:=Module[{pr=Times@@IntegerDigits[n]},pr!=0&&PrimeQ[n-pr]]; Select[Prime[Range[300]],pdsQ] (* Harvey P. Dale, Jul 29 2017 *)
-
PARI
dprod(n)=my(v=digits(n));prod(i=1,#v,v[i]) is(n)=my(d=dprod(n)); d>0 && isprime(n) && isprime(n-d) \\ Charles R Greathouse IV, Aug 12 2013
Extensions
a(3), a(10), a(15)-a(57) from Charles R Greathouse IV, Aug 12 2013